首页> 中文期刊> 《机械工程与自动化:英文版》 >Transonic Airfoil Design and Optimization for an Unmanned Air Vehicle Concept

Transonic Airfoil Design and Optimization for an Unmanned Air Vehicle Concept

         

摘要

cqvip:Design,optimization and analysis of a new energy efficient 16%thick transonic airfoil were completed for a notional air vehicle concept.The airfoil specifications included a range of Reynolds number per foot from 1.7 million to 2.5 million and Mach number from 0.4 to 0.8.Shape optimization in geometry and inverse design modules of the airfoil analysis program MSES were used to design a new 16%thick reference airfoil.The performance of the reference airfoil was then optimized with an objective of minimizing drag coefficient for 7 design points with conflicting requirements in Reynolds and Mach number by using the MSES/LINDOP optimizer.The optimization results in an upward shift of drag bucket in the direction of higher lift coefficient.Both surface pressure distribution and Mach contour plots show that supersonic compression waves on airfoil surface are terminated at Mach 0.78 with a normal shock wave and associated flow separation,which causes not only a decrease of the maximum suction pressure,but also a decrease in lift and increase in drag coefficient.The new optimized airfoil shows robust performance when operating within the specified design constraints.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号