首页> 中文期刊> 《矿业科学技术》 >Improved geologic surface approximation using a multiquadric method with additional constraints

Improved geologic surface approximation using a multiquadric method with additional constraints

         

摘要

Geologic surface approximation is profoundly affected by the presence, density and location of scattered geologic input data. Many studies have recognized the importance of utilizing varied sources of information when reconstructing a surface. This paper presents an improved geologic surface approximation method using a multiquadric function and borehole data. Additional information, i.e., inequality elevation and dip-strikes data extracted from outcrops or mining faces, is introduced in the form of physical constraints that control local changes in the estimated surface. Commonly accepted hypothesis states that geologic surfaces can be approximated to any desired degree of exactness by the summation of regular, mathematically defined, surfaces: in particular displaced quadric forms. The coefficients of the multiquadric functions are traditionally found by a least squares method. The addition of physical constraints in this work makes such an approach into a non-deterministic polynomial time problem. Hence we propose an objective function that represents the quality of the estimated surface and that includes the additional constraints by incorporation of a penalty function. Maximizing the smoothness of the estimated surface and its fitness to the additional constraints then allows the coefficients of the multiquadric function to be obtained by iterative methods. This method was implemented and demonstrated using data collected from the 81'st coal mining area of the Huaibei Coal Group.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号