首页> 中文期刊> 《中国神经再生研究:英文版》 >Locomotor analysis identifies early compensatory changes during disease progression and subgroup classification in a mouse model of amyotrophic lateral sclerosis

Locomotor analysis identifies early compensatory changes during disease progression and subgroup classification in a mouse model of amyotrophic lateral sclerosis

         

摘要

Amyotrophic lateral sclerosis is a motoneuron degenerative disease that is challenging to diagnose and presents with considerable variability in survival.Early identification and enhanced understanding of symptomatic patterns could aid in diagnosis and provide an avenue for monitoring disease progression.Use of the m SOD1 G93 A mouse model provides control of the confounding environmental factors and genetic heterogeneity seen in amyotrophic lateral sclerosis patients,while investigating underlying disease-induced changes.In the present study,we performed a longitudinal behavioral assessment paradigm and identified an early hindlimb symptom,resembling the common gait abnormality foot drop,along with an accompanying forelimb compensatory mechanism in the m SOD1 G93 A mouse.Following these initial changes,m SOD1 mice displayed a temporary hindlimb compensatory mechanism resembling an exaggerated steppage gait.As the disease progressed,these compensatory mechanisms were not sufficient to sustain fundamental locomotor parameters and more severe deficits appeared.We next applied these initial findings to investigate the inherent variability in B6 SJL m SOD1 G93 A survival.We identified four behavioral variables that,when combined in a cluster analysis,identified two subpopulations with different disease progression rates:a fast progression group and a slow progression group.This behavioral assessment paradigm,with its analytical approaches,provides a method for monitoring disease progression and detecting m SOD1 subgroups with different disease severities.This affords researchers an opportunity to search for genetic modifiers or other factors that likely enhance or slow disease progression.Such factors are possible therapeutic targets with the potential to slow disease progression and provide insight into the underlying pathology and disease mechanisms.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号