首页> 中文期刊> 《光电进展(英文版)》 >Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids

Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids

         

摘要

High spatial frequency laser induced periodic surface structures (HSFLs) on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm2.This work aims to enrich the variety of HSFLs-containing hierarchical microstructures,by femtosecond laser (pulse duration:457 fs,wavelength:1045 nm,and repetition rate:100 kHz) in liquids (water and acetone) at laser fluence of 1.7 J/cm2.The period of Si-HSFLs in the range of 110-200 nm is independent of the scanning speeds (0.1,0.5,1 and 2 mm/s),line intervals (5,15 and 20 μm) of scanning lines and scanning directions (perpendicular or parallel to light polarization direction).It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization,both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50° as compared to those of normal HSFLSs are found on the microstructures with height gradients.Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs.The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs.On the basis of our findings and previous reports,a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed,including thermal melting with the concomitance of ultrafast cooling in liquids,transformation of the molten layers into ripples and nanotips by surface plasmon polaritons (SPP) and second-harmonic generation (SHG),and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.

著录项

  • 来源
    《光电进展(英文版)》 |2019年第3期|1-18|共18页
  • 作者

    Dongshi Zhang; Koji Sugioka;

  • 作者单位

    RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan;

    RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan;

  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号