首页> 中文期刊> 《等离子体科学和技术:英文版》 >Thermochemical Nonequilibrium 2D Modeling of Nitrogen Inductively Coupled Plasma Flow

Thermochemical Nonequilibrium 2D Modeling of Nitrogen Inductively Coupled Plasma Flow

         

摘要

Two-dimensional(2D) numerical simulations of thermochemical nonequilibrium inductively coupled plasma(ICP) flows inside a 10-kW inductively coupled plasma wind tunnel(ICPWT) were carried out with nitrogen as the working gas.Compressible axisymmetric NavierStokes(N-S) equations coupled with magnetic vector potential equations were solved.A fourtemperature model including an improved electron-vibration relaxation time was used to model the internal energy exchange between electron and heavy particles.The third-order accuracy electron transport properties(3rd AETP) were applied to the simulations.A hybrid chemical kinetic model was adopted to model the chemical nonequilibrium process.The flow characteristics such as thermal nonequilibrium,inductive discharge,effects of Lorentz force were made clear through the present study.It was clarified that the thermal nonequilibrium model played an important role in properly predicting the temperature field.The prediction accuracy can be improved by applying the 3rd AETP to the simulation for this ICPWT.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号