首页> 中文期刊> 《环境科学研究》 >以一种黏土矿物材料为非均相类芬顿催化剂对甲基橙的降解

以一种黏土矿物材料为非均相类芬顿催化剂对甲基橙的降解

         

摘要

为实现以甲基橙为代表的偶氮类染料的高效降解,采用一种黏土矿物材料---Quantum Energy?Radiating Material(下称QE)为催化剂,系统分析了其在非均相类芬顿反应中的催化剂协同静态吸附作用,并考察了不同因素对甲基橙去除效果的影响,同时基于降解过程中Fe2+和总Fe析出量(以ρ计)、?OH等的变化过程,探讨了QE降解甲基橙的作用机制.结果表明,QE对甲基橙具有良好的吸附作用,同时,其作为非均相类芬顿催化剂对甲基橙的降解受到pH、温度、c(H2O2)、催化剂投加量等因素的影响.优化后的降解条件:初始ρ(甲基橙)为50 mg∕L、QE投加量为5 g∕L、c(H2 O2)为100 mmol∕L、pH为2、温度为60℃,在该条件下反应40 min后,甲基橙的去除率可达到99%.以叔丁醇作为?OH淬灭剂,随着c(叔丁醇)的增高,反应体系中甲基橙的去除率随之下降,说明?OH在该体系甲基橙降解中起重要作用;对在反应过程中Fe2+和总Fe析出量的监测数据表明,体系中QE对甲基橙的降解为均相芬顿反应、非均相芬顿反应和吸附作用协同作用的结果.研究显示,以QE为催化剂,通过吸附协同催化氧化作用可以有效处理含甲基橙的染料废水.%'Quantum Energy? Radiating Material' (QE), a type of clay mineral material, was applied in the degradation of azo dye ( represented by methyl orange ) . The synergistic effects of both static adsorption and heterogeneous Fenton-type catalyst of QE were systematically analyzed, and their effects on methyl orange degradation under different influencing factors were also discussed. The degrading mechanism of methyl orange with QE was then discussed based on the monitoring of ferrous ion, total iron and hydroxyl free radicals during the whole process. The results showed that QE showed good adsorption capacity, and the effectiveness of degradation of methyl orange was influenced by pH, temperature, the concentration of H2 O2 and the dosage of catalyst when QE was used as the heterogeneous Fenton-type catalyst. The removal rate of methyl orange could reach 99% under the optimized conditions of 50 mg∕L ρ(methyl orange), 5 g∕L ρ(QE), 100 mmol∕L c( H2 O2 ) ;pH 2. 0 and temperature 60℃ for 40 min. Furthermore, the production of?OH and its significant function in methyl orange degradation was demonstrated after tertiary butanol was added as the scavenger of?OH in the system. In combination with the monitoring data of the Fe2+and total Fe in the process, it was indicated that the degradation of methyl orange was the synergic result of adsorption with QE, and reactions in homogeneous and heterogeneous phases as well. These results showed that application of QE through adsorption and oxidation is effective in disposing wastewater with methyl orange.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号