首页> 中文期刊> 《中国有色金属学报:英文版》 >Microstructure and high temperature mechanical properties of laser rapidly formed Ti-6Al-4V alloy

Microstructure and high temperature mechanical properties of laser rapidly formed Ti-6Al-4V alloy

         

摘要

Several tensile samples were prepared using laser rapid forming (LRF) with Ti-6Al-4V alloy as powder material, and the samples were annealed. The microstructure and high temperature mechanical properties of laser formed Ti-6Al-4V alloy through annealing treatment were investigated. The short-term and long-term tensile tests at 350 ℃ were performed. The results show that the microstructure of LRF samples consists of the large columnar prior β grains which grow epitaxially from the substrate along the deposition direction. There are Widmanst-tten α laths in prior β grains, but α laths in annealed microstructure are coarser, and their aspect ratio is lower than that in as-deposited microstructure. In addition, the prior β grain boundary is also coarsened and broken off through the annealing treatment. The high temperature mechanical properties of the annealed LRF samples exceed those of casting alloy significantly, especially the stress-rupture lifetime reaches 661.7 h even while the test stress increases from initial value of 490 MPa to the final stress of 800 MPa gradually.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号