首页> 美国卫生研究院文献>ACS AuthorChoice >UltrathinCeramic Piezoelectric Films via Room-Temperature Electrospray Depositionof ZnO Nanoparticles for Printed GHz Devices
【2h】

UltrathinCeramic Piezoelectric Films via Room-Temperature Electrospray Depositionof ZnO Nanoparticles for Printed GHz Devices

机译:超薄室温电喷雾沉积的陶瓷压电薄膜ZnO纳米颗粒用于印刷GHz器件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High-frequency devices are key enablers of state-of-the-art electronics used in a wide and diverse range of exciting applications such as inertial navigation, communications, power conversion, medicine, and parallel computing. However, high-frequency additively manufactured piezoelectric devices are yet to be demonstrated due to shortcomings in the properties of the printed transducing material and the attainable film thickness. In this study, we report the first room-temperature-printed, piezoelectric, ultrathin (<100 nm) ceramic films compatible with high-frequency (>1 GHz) operation. The films are made of zinc oxide (ZnO) nanoparticles via near-field electrohydrodynamic jetting, achieving film piezoelectricity, without high-temperature processing, through a novel mechanism that is controlled during the deposition. Optimization of the printing process and feedstock formulation results in homogeneous traces as narrow as 213 μm and as thin as 53 nm as well as uniform field films as thin as 91 nm; the printing technique can be used with flexible and rigid, conductive and insulating substrates. The crystallographic orientation of theimprints toward the (100) plane increases if the rastering speed duringprinting is augmented, resulting in a larger piezoelectric response.The resonant frequency of film bulk acoustic resonators increasesmonotonically with the rastering speed, achieving transmission valuesas high as 4.99 GHz, which corresponds to an acoustic velocity of2094 m/s, similar to the expected transverse value in high-temperature-grownZnO films. Piezoresponse force microscopy maps of printed field filmsshow local variation in the piezoelectric behavior across the film,with an average piezoelectric response as high as 21.5 pm/V, significantlyhigher than the d33 piezoelectric coefficientof single-crystal, high-temperature-grown ZnO, and comparable withreported values from ZnO nanostructures.
机译:高频设备是在众多激动人心的应用(例如惯性导航,通信,功率转换,医学和并行计算)中使用的最新电子技术的关键推动力。然而,由于印刷的换能材料的特性和可获得的膜厚的缺点,高频增材制造的压电器件尚未得到证实。在这项研究中,我们报告了第一款可与高频(> 1 GHz)操作兼容的室温印刷的压电超薄(<100 nm)陶瓷膜。薄膜是由氧化锌(ZnO)纳米粒子通过近场电液动力喷射制成的,通过沉积过程中控制的新型机制,无需高温处理即可实现薄膜压电性。印刷工艺和原料配方的优化导致均匀的痕迹,窄至213μm,薄至53 nm,以及均匀的场膜薄至91 nm;该印刷技术可用于柔性和刚性,导电和绝缘的基材。的晶体学取向如果在扫描过程中光栅速度增加,则朝向(100)平面的印记会增加印刷增加,导致更大的压电响应。薄膜压电谐振器的谐振频率增加以光栅速度单调,实现透射值高达4.99 GHz,对应于2094 m / s,类似于高温生长时的预期横向值ZnO薄膜。印刷现场胶片的压电响应力显微镜图在整个膜上显示出压电行为的局部变化,平均压电响应高达21.5 pm / V高于d33压电系数单晶,高温生长的ZnO,与报道了ZnO纳米结构的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号