首页> 美国卫生研究院文献>Bioengineering >A Three-Dimensional Collagen-Elastin Scaffold for Heart Valve Tissue Engineering
【2h】

A Three-Dimensional Collagen-Elastin Scaffold for Heart Valve Tissue Engineering

机译:用于心脏瓣膜组织工程的三维胶原蛋白-弹性蛋白支架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Since most of the body’s extracellular matrix (ECM) is composed of collagen and elastin, we believe the choice of these materials is key for the future and promise of tissue engineering. Once it is known how elastin content of ECM guides cellular behavior (in 2D or 3D), one will be able to harness the power of collagen-elastin microenvironments to design and engineer stimuli-responsive tissues. Moreover, the implementation of such matrices to promote endothelial-mesenchymal transition of primary endothelial cells constitutes a powerful tool to engineer 3D tissues. Here, we design a 3D collagen-elastin scaffold to mimic the native ECM of heart valves, by providing the strength of collagen layers, as well as elasticity. Valve interstitial cells (VICs) were encapsulated in the collagen-elastin hydrogels and valve endothelial cells (VECs) cultured onto the surface to create an in vitro 3D VEC-VIC co-culture. Over a seven-day period, VICs had stable expression levels of integrin β1 and F-actin and continuously proliferated, while cell morphology changed to more elongated. VECs maintained endothelial phenotype up to day five, as indicated by low expression of F-actin and integrin β1, while transformed VECs accounted for less than 7% of the total VECs in culture. On day seven, over 20% VECs were transformed to mesenchymal phenotype, indicated by increased actin filaments and higher expression of integrin β1. These findings demonstrate that our 3D collagen-elastin scaffolds provided a novel tool to study cell-cell or cell-matrix interactions in vitro, promoting advances in the current knowledge of valvular endothelial cell mesenchymal transition.
机译:由于人体的大多数细胞外基质(ECM)由胶原蛋白和弹性蛋白组成,因此我们认为这些材料的选择对于组织工程的未来和前景至关重要。一旦知道了ECM的弹性蛋白含量如何指导细胞行为(以2D或3D形式),人们便能够利用胶原蛋白-弹性蛋白微环境的力量来设计和工程化刺激响应组织。而且,实施此类基质以促进原代内皮细胞的内皮-间质转化构成了工程化3D组织的强大工具。在这里,我们设计了一种3D胶原蛋白弹性蛋白支架,通过提供胶原蛋白层的强度和弹性来模仿心脏瓣膜的天然ECM。将瓣膜间质细胞(VIC)封装在胶原蛋白-弹性蛋白水凝胶中,并将瓣膜内皮细胞(VEC)培养到表面上,以创建体外3D VEC-VIC共培养。在7天的时间内,VIC具有稳定的整联蛋白β1和F-肌动蛋白表达水平,并持续增殖,而细胞形态却变得更加细长。如F-肌动蛋白和整联蛋白β1的低表达所表明的那样,VEC直到第5天仍保持内皮表型,而转化的VEC占培养物中总VEC的不到7%。第七天,超过20%的VEC转化为间充质表型,肌动蛋白丝增加和整联蛋白β1的高表达表明。这些发现表明,我们的3D胶原蛋白-弹性蛋白支架为体外研究细胞-细胞或细胞-基质相互作用提供了一种新颖的工具,从而促进了目前对瓣膜内皮细胞间质转化的认识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号