首页> 美国卫生研究院文献>Materials >Integrated Forming and Surface Engineering of Disc Springs by Inducing Residual Stresses by Incremental Sheet Forming
【2h】

Integrated Forming and Surface Engineering of Disc Springs by Inducing Residual Stresses by Incremental Sheet Forming

机译:通过增量板料成形引起残余应力的碟形弹簧集成成形和表面工程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Disc springs are conical annular discs, which are characterized by a high spring force with a small spring travel and good space utilization. In operation, they must meet high demands on the stability of the spring characteristic and the fatigue strength. Under loading, tensile stresses occur which limit the possible applications of disc springs. Compressive stresses can be generated in the stressed areas by means of shot-peening in order to extend the operating limits for a given yield and fatigue strength. Since the spring geometry and characteristics change during shot-peening, the design of the shot-peening treatment is iterative and cumbersome. The present research proposes an incremental forming process for forming and integrated targeted adjustment of residual stresses in disc springs from metastable austenitic stainless steel (MASS), to achieve improved spring properties and high cyclic strength. The main mechanism of residual stress generation is the transformation of metastable austenite into martensite under the action of the forming tool. Different experimental characterization techniques like the hole drilling method, X-ray diffraction, disc compression tests, optical microscopy and cyclic tests are used to correlate the residual stresses and disc spring properties. A numerical model is developed for simulating the martensite transformation in disc springs manufacturing. The results prove that incremental forming enables process-integrated engineering of the desired compressive residual stresses, entailing a higher spring force of metastable austenitic disc springs in comparison to conventional disc springs. Due to martensite formation, the generated residual stresses are stable under cyclic loading, which is not the case for conventionally manufactured springs.
机译:碟形弹簧是圆锥形的环形碟形,其特点是弹簧力高,弹簧行程小,空间利用率高。在运行中,它们必须满足对弹簧特性稳定性和疲劳强度的高要求。在负载下会产生拉伸应力,从而限制了碟形弹簧的可能应用。可以通过喷丸处理在受力区域中产生压应力,以扩展给定屈服强度和疲劳强度的运行极限。由于在喷丸处理过程中弹簧的几何形状和特性发生变化,因此喷丸处理的设计是反复的且麻烦的。本研究提出了一种渐进成形工艺,用于成形和综合定向调节亚稳态奥氏体不锈钢(MASS)碟形弹簧中的残余应力,以实现改善的弹簧性能和高循环强度。残余应力产生的主要机理是在成形工具的作用下,亚稳态奥氏体转变为马氏体。使用不同的实验表征技术,例如钻孔方法,X射线衍射,圆盘压缩测试,光学显微镜和循环测试,将残余应力和圆盘弹簧特性关联起来。建立了一个数值模型来模拟碟形弹簧制造过程中的马氏体转变。结果证明,增量成形使所需的压缩残余应力的过程集成工程成为可能,与传统的碟形弹簧相比,亚稳态奥氏体碟形弹簧需要更高的弹力。由于马氏体的形成,所产生的残余应力在循环载荷下是稳定的,而常规制造的弹簧则不是这种情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号