首页> 美国卫生研究院文献>Materials >Studying Grain Boundary Strengthening by Dislocation-Based Strain Gradient Crystal Plasticity Coupled with a Multi-Phase-Field Model
【2h】

Studying Grain Boundary Strengthening by Dislocation-Based Strain Gradient Crystal Plasticity Coupled with a Multi-Phase-Field Model

机译:基于位错的应变梯度晶体塑性与多相场模型相结合的晶粒边界强化研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One ambitious objective of Integrated Computational Materials Engineering (ICME) is to shorten the materials development cycle by using computational materials simulation techniques at different length scales. In this regard, the most important aspects are the prediction of the microstructural evolution during material processing and the understanding of the contributions of microstructural features to the mechanical response of the materials. One possible solution to such a challenge is to apply the Phase Field (PF) method because it can predict the microstructural evolution under the influence of different internal or external stimuli, including deformation. To accomplish this, it is necessary to take into account plasticity or, specifically, non-homogeneous plastic deformation, which is particularly important for investigating the size effects in materials emerging at the micron length scale. In this work, we present quasi-2D simulations of plastic deformation in a face centred cubic system using a finite strain formulation. Our model consists of dislocation-based strain gradient crystal plasticity implemented into a PF code. We apply this model to study the influence of grain size on the mechanical behavior of polycrystals, which includes dislocation storage and annihilation. Furthermore, the initial state of the material before deformation is also considered. The results show that a dislocation-based strain gradient crystal plasticity model can capture the Hall-Petch effect in many aspects. The model reproduced the correct functional dependence of the flow stress of the polycrystal on grain size without assigning any special properties to the grain boundaries. However, the predicted Hall-Petch coefficients are significantly smaller than those found typically in experiments. In any case, we found a good qualitative agreement between our findings and experimental results.
机译:集成计算材料工程(ICME)的一项宏伟目标是通过使用不同长度尺度的计算材料模拟技术来缩短材料开发周期。在这方面,最重要的方面是材料加工过程中微观结构演变的预测以及对微观结构特征对材料机械响应的贡献的理解。解决这一难题的一种可能解决方案是应用相场(PF)方法,因为它可以预测在不同内部或外部刺激(包括变形)的影响下的微观结构演变。为此,必须考虑可塑性,特别是不均匀的塑性变形,这对于研究微米长度尺度上出现的材料的尺寸效应特别重要。在这项工作中,我们提出了使用有限应变公式在面心立方系统中进行塑性变形的准二维模拟。我们的模型包括实现到PF代码中的基于位错的应变梯度晶体可塑性。我们应用该模型来研究晶粒尺寸对多晶力学行为的影响,包括位错存储和an没。此外,还考虑了变形之前材料的初始状态。结果表明,基于位错的应变梯度晶体可塑性模型可以在许多方面捕获霍尔-帕奇效应。该模型再现了多晶流动应力对晶粒尺寸的正确函数依赖性,而没有给晶粒边界赋予任何特殊的特性。但是,预测的Hall-Petch系数明显小于实验中通常发现的系数。无论如何,我们在发现和实验结果之间找到了很好的定性一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号