首页> 美国卫生研究院文献>Materials >Effect of Cooling Rate on Phase and Crystal Morphology Transitions of CaO–SiO2-Based Systems and CaO–Al2O3-Based Systems
【2h】

Effect of Cooling Rate on Phase and Crystal Morphology Transitions of CaO–SiO2-Based Systems and CaO–Al2O3-Based Systems

机译:冷却速率对CaO-SiO2基体系和CaO-Al2O3基体系相和晶体形态转变的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The phase and crystal morphology transitions of two typical types of mold fluxes were investigated fundamentally using differential scanning calorimetry (DSC) and confocal scanning laser microscopy (CSLM) techniques. For the traditional CaO–SiO2–CaF2-based mold flux, different cooling rates can change the phases and the crystal morphologies. Faceted cuspidine and CaSiO3 are co-precipitated when the cooling rate is less than 50 °C·min−1. The phases transform from Ca4Si2O7F2 and CaSiO3 to Ca4Si2O7F2 at the cooling rate of 50 °C·min−1. Cuspidine shows four different morphologies: faceted shape, fine stripe, fine stripe dendrite, and flocculent dendrite. The crystalline phases of CaAl2O4 and Ca3B2O6 are co-precipitated in the CaO–Al2O3-based mold flux. Neither the phases nor the crystal morphologies change in the low cooling rate range (5 °C·min−1 to 50 °C·min−1). With decreasing temperature, the morphology of CaAl2O4 firstly becomes dendritic, and then the dendritic quality gradually changes to a large-mesh blocky shape at the cooling rates of 100 °C·min−1, 200 °C·min−1, and 500 °C·min−1. Different cooling rates do not show an obvious impact on the morphology transition of CaAl2O4. The strong crystallization ability and large rate of crystallization affect the control of the heat transfer of the CaO–Al2O3-based mold flux during casting. The big morphology difference between primary crystals of the CaO–SiO2–CaF2-based mold flux and the CaO–Al2O3-based mold flux is probably one of the biggest factors limiting lubrication between the CaO–Al2O3-based mold flux and high-Al steel during casting.
机译:使用差示扫描量热法(DSC)和共聚焦扫描激光显微镜(CSLM)技术从根本上研究了两种典型类型的保护渣的相态和晶体形态转变。对于传统的基于CaO–SiO2–CaF2的铸模助熔剂,不同的冷却速率会改变相和晶体形态。冷却速度低于50°C·min -1 时,多面cuspidine和CaSiO3共沉淀。在50°C·min -1 的冷却速率下,相从Ca4Si2O7F2和CaSiO3转变为Ca4Si2O7F2。 Cuspidine显示四种不同的形态:刻面形状,细条纹,细条纹树枝状和絮状树枝状。 CaAl2O4和Ca3B2O 6 的结晶相在基于CaO–Al 2 O 3 的铸模助熔剂中共沉淀。在低冷却速率范围(5°C·min -1 至50°C·min -1 )中,相和晶体形态均未改变。随着温度的降低,CaAl 2 O 4 的形貌首先变为树枝状,然后在100°C的冷却速率下,树枝状质量逐渐变为大网状块状。 C·min -1 ,200°C·min -1 和500°C·min -1 。不同的冷却速率对CaAl 2 O 4 的形态转变没有明显影响。强大的结晶能力和较大的结晶速率影响了铸造过程中CaO–Al 2 O 3 基铸模助熔剂传热的控制。 CaO–SiO 2 –CaF 2-基脱模剂的初生结晶与CaO–Al 2 O 的初生结晶之间存在很大的形貌差异> 3 基保护渣可能是限制CaO–Al 2 O 3 基保护渣与高Al钢之间润滑的最大因素之一在铸造期间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号