首页> 美国卫生研究院文献>Frontiers in Human Neuroscience >Computational Modeling of Distinct Neocortical Oscillations Driven by Cell-Type Selective Optogenetic Drive: Separable Resonant Circuits Controlled by Low-Threshold Spiking and Fast-Spiking Interneurons
【2h】

Computational Modeling of Distinct Neocortical Oscillations Driven by Cell-Type Selective Optogenetic Drive: Separable Resonant Circuits Controlled by Low-Threshold Spiking and Fast-Spiking Interneurons

机译:由细胞类型选择性光遗传学驱动的不同新皮层振荡的计算模型:由低阈值尖峰和快速尖峰的中间神经元控制的可分离谐振电路

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Selective optogenetic drive of fast-spiking (FS) interneurons (INs) leads to enhanced local field potential (LFP) power across the traditional “gamma” frequency band (20–80 Hz; Cardin et al., ). In contrast, drive to regular-spiking (RS) pyramidal cells enhances power at lower frequencies, with a peak at 8 Hz. The first result is consistent with previous computational studies emphasizing the role of FS and the time constant of GABAA synaptic inhibition in gamma rhythmicity. However, the same theoretical models do not typically predict low-frequency LFP enhancement with RS drive. To develop hypotheses as to how the same network can support these contrasting behaviors, we constructed a biophysically principled network model of primary somatosensory neocortex containing FS, RS, and low-threshold spiking (LTS) INs. Cells were modeled with detailed cell anatomy and physiology, multiple dendritic compartments, and included active somatic and dendritic ionic currents. Consistent with prior studies, the model demonstrated gamma resonance during FS drive, dependent on the time constant of GABAA inhibition induced by synchronous FS activity. Lower-frequency enhancement during RS drive was replicated only on inclusion of an inhibitory LTS population, whose activation was critically dependent on RS synchrony and evoked longer-lasting inhibition. Our results predict that differential recruitment of FS and LTS inhibitory populations is essential to the observed cortical dynamics and may provide a means for amplifying the natural expression of distinct oscillations in normal cortical processing.
机译:快速加标(FS)中间神经元(IN)的选择性光遗传学驱动会导致在传统的“伽马”频段(20–80 Hz; Cardin等人)上增强局部场势(LFP)功率。相比之下,驱动到定期加电(RS)的锥体细胞可提高低频下的功率,峰值为8 Hz。第一个结果与先前的计算研究相一致,后者强调了FS的作用以及GABAA突触抑制在伽玛节律中的时间常数。但是,相同的理论模型通常无法预测使用RS驱动的低频LFP增强。为了提出关于同一网络如何支持这些相反行为的假设,我们构建了包含FS,RS和低阈值尖峰(LTS)IN的主要体感新皮层的生物物理学原理网络模型。用详细的细胞解剖结构和生理学,多个树突状区室对细胞进行建模,并包括活跃的体细胞和树突状离子电流。与先前的研究一致,该模型证明了FS驱动过程中的伽马共振,这取决于同步FS活性诱导的GABA A抑制的时间常数。 RS驱动过程中的低频增强仅在包含抑制性LTS种群时才能复制,该种群的激活严重依赖于RS同步性并引起持久的抑制作用。我们的结果预测,FS和LTS抑制种群的差异募集对于观察到的皮层动力学至关重要,并且可能提供一种在正常皮层处理中放大不同振荡的自然表达的手段。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号