首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Enabling Functional Neural Circuit Simulations with Distributed Computing of Neuromodulated Plasticity
【2h】

Enabling Functional Neural Circuit Simulations with Distributed Computing of Neuromodulated Plasticity

机译:通过神经调节可塑性的分布式计算实现功能性神经回路仿真

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A major puzzle in the field of computational neuroscience is how to relate system-level learning in higher organisms to synaptic plasticity. Recently, plasticity rules depending not only on pre- and post-synaptic activity but also on a third, non-local neuromodulatory signal have emerged as key candidates to bridge the gap between the macroscopic and the microscopic level of learning. Crucial insights into this topic are expected to be gained from simulations of neural systems, as these allow the simultaneous study of the multiple spatial and temporal scales that are involved in the problem. In particular, synaptic plasticity can be studied during the whole learning process, i.e., on a time scale of minutes to hours and across multiple brain areas. Implementing neuromodulated plasticity in large-scale network simulations where the neuromodulatory signal is dynamically generated by the network itself is challenging, because the network structure is commonly defined purely by the connectivity graph without explicit reference to the embedding of the nodes in physical space. Furthermore, the simulation of networks with realistic connectivity entails the use of distributed computing. A neuromodulated synapse must therefore be informed in an efficient way about the neuromodulatory signal, which is typically generated by a population of neurons located on different machines than either the pre- or post-synaptic neuron. Here, we develop a general framework to solve the problem of implementing neuromodulated plasticity in a time-driven distributed simulation, without reference to a particular implementation language, neuromodulator, or neuromodulated plasticity mechanism. We implement our framework in the simulator NEST and demonstrate excellent scaling up to 1024 processors for simulations of a recurrent network incorporating neuromodulated spike-timing dependent plasticity.
机译:计算神经科学领域的一个主要难题是如何将高级生物的系统级学习与突触可塑性联系起来。最近,可塑性规则不仅取决于突触前和突触后的活动,而且还取决于第三种非局部神经调节信号,作为弥合宏观和微观学习水平之间差距的关键候选者。可以从神经系统的仿真中获得对该主题的重要见识,因为它们可以同时研究问题中涉及的多个时空尺度。特别地,可以在整个学习过程中,即在几分钟到几小时的时间尺度上并且在多个脑区域中研究突触可塑性。在网络本身动态生成神经调节信号的大规模网络仿真中,实现神经调节可塑性具有挑战性,因为网络结构通常仅由连通性图定义,而没有明确引用物理空间中节点的嵌入。此外,对具有实际连接性的网络进行仿真需要使用分布式计算。因此,必须以有效的方式告知神经调节突触有关神经调节信号,该信号通常是由与突触前或突触后神经元位于不同机器上的一群神经元产生的。在这里,我们开发了一个通用框架来解决在时间驱动的分布式仿真中实现神经调节可塑性的问题,而无需参考特定的实现语言,神经调节剂或神经调节可塑性机制。我们在NEST模拟器中实现了我们的框架,并演示了多达1024个处理器的出色扩展能力,可用于模拟结合了神经调节的与峰值定时相关的可塑性的循环网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号