首页> 美国卫生研究院文献>Micromachines >Positioning Error Analysis and Control of a Piezo-Driven 6-DOF Micro-Positioner
【2h】

Positioning Error Analysis and Control of a Piezo-Driven 6-DOF Micro-Positioner

机译:压电驱动6自由度微定位器的定位误差分析与控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a positioning error model and a control compensation scheme for a six-degree-of-freedom (6-DOF) micro-positioner based on a compliant mechanism and piezoelectric actuators (PZT). The positioning error model is established by means of the kinematic model of the compliant mechanism and complete differential coefficient theory, which includes the relationships between three typical errors (hysteresis, machining and measuring errors) and the total positioning error. The quantitative analysis of three errors is demonstrated through several experimental studies. Afterwards, an inverse Presiach model-based feedforward compensation of the hysteresis nonlinearity is employed by the control scheme, combined with a proportional-integral-derivative (PID) feedback controller for the compensation of machining and measuring errors. Moreover, a back propagation neural network PID (BP-PID) controller and a cerebellar model articulation controller neural network PID (CMAC-PID) controller are also adopted and compared to obtain optimal control. Taking the translational motion along the X axis as an example, the positioning errors are sharply reduced by the inverse hysteresis model with the maximum error of 12.76% and a root-mean-square error of 4.09%. In combination with the CMAC-PID controller, the errors are decreased to 0.63% and 0.23%, respectively. Hence, simulated and experimental results reveal that the proposed approach can improve the positioning accuracy of 6-DOF for the micro-positioner.
机译:本文提出了一种六自由度(6-DOF)微型定位器基于顺应性机构和压电致动器(PZT)的定位误差模型和控制补偿方案。定位误差模型是通过顺应机构的运动学模型和完整的微分系数理论建立的,其中包括三个典型误差(磁滞,加工和测量误差)与总定位误差之间的关系。通过一些实验研究证明了对三个误差的定量分析。然后,控制方案采用基于Presiach逆模型的磁滞非线性反馈前馈补偿,并与比例积分微分(PID)反馈控制器相结合,以补偿加工误差和测量误差。此外,还采用了反向传播神经网络PID(BP-PID)控制器和小脑模型关节控制神经网络PID(CMAC-PID)控制器进行比较,以获得最优控制。以沿X轴的平移运动为例,逆滞后模型可显着减少定位误差,最大误差为12.76%,均方根误差为4.09%。与CMAC-PID控制器结合使用时,误差分别降低到0.63%和0.23%。因此,仿真和实验结果表明,该方法可以提高微定位器的6自由度定位精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号