【2h】

Muscle function in avian flight: achieving power and control

机译:鸟类飞行中的肌肉功能:实现力量和控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms for minimizing energy losses associated with body movement combined with elastic energy savings to reduce the skeletal muscles' work requirements. Muscles also produce substantial power during swimming, but this is mainly to overcome body drag rather than to support the animal's weight. Here, I review the function and architecture of key flight muscles related to how these muscles contribute to producing the power required for flapping flight, how the muscles are recruited to control wing motion and how they are used in manoeuvring. An emergent property of the primary flight muscles, consistent with their need to produce considerable work by moving the wings through large excursions during each wing stroke, is that the pectoralis and supracoracoideus muscles shorten over a large fraction of their resting fibre length (33–42%). Both muscles are activated while being lengthened or undergoing nearly isometric force development, enhancing the work they perform during subsequent shortening. Two smaller muscles, the triceps and biceps, operate over a smaller range of contractile strains (12–23%), reflecting their role in controlling wing shape through elbow flexion and extension. Remarkably, pigeons adjust their wing stroke plane mainly via changes in whole-body pitch during take-off and landing, relative to level flight, allowing their wing muscles to operate with little change in activation timing, strain magnitude and pattern.
机译:扑翼飞行对动物的生理性能提出了苛刻的要求。鸟类飞行的肌肉,特别是在较小体型的鸟类中,通常会在高频下收缩并做大量工作,以产生支撑动物在空中的重量并克服阻力的空气动力。这与地面运动相反,地面运动提供了将与身体运动相关的能量损失最小化的机制,同时还提供了弹性能量节省功能,以减少骨骼肌的工作需求。肌肉在游泳时也会产生大量力量,但这主要是为了克服身体的阻力而不是支撑动物的体重。在这里,我将回顾关键飞行肌肉的功能和结构,这些肌肉与这些肌肉如何有助于产生扑翼所需的力量,如何招募肌肉来控制机翼运动以及如何将它们用于机动相关。主要飞行肌肉的一种新兴特性,与它们在每个机翼冲程中通过将机翼移动一次大的偏移来进行大量工作的需求相一致,是胸大肌和胸上肌在其静止纤维长度的很大一部分上会缩短(33-42 %)。两条肌肉在被拉长或受到近等轴测力的作用下均被激活,从而增强了它们在随后的缩短过程中所执行的工作。肱三头肌和二头肌这两个较小的肌肉在较小的收缩应变范围内(12–23%)起作用,反映出它们在通过肘部弯曲和伸展控制机翼形状中的作用。值得注意的是,鸽子主要通过相对于水平飞行的起飞和着陆过程中的全身俯仰变化来调整其机翼冲程平面,从而使它们的机翼肌肉在激活时机,应变大小和模式上几乎没有变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号