首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Modeling of Sensor Placement Strategy for Shape Sensing and Structural Health Monitoring of a Wing-Shaped Sandwich Panel Using Inverse Finite Element Method
【2h】

Modeling of Sensor Placement Strategy for Shape Sensing and Structural Health Monitoring of a Wing-Shaped Sandwich Panel Using Inverse Finite Element Method

机译:翼形夹芯板形状传感和结构健康监测的传感器布置策略建模的逆有限元方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM) was used together with the Refined Zigzag Theory (RZT), in order to enable accurate predictions for transverse deflection and through-the-thickness variation of interfacial displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel three-node C°-continuous inverse-shell element, known as i3-RZT. The discrete strain data is generated numerically through performing a high-fidelity finite element analysis on the wing-shaped panel. This numerical strain data represents experimental strain readings obtained from surface patched strain gauges or embedded fiber Bragg grating (FBG) sensors. Three different sensor placement configurations with varying density and alignment of strain data were examined and their corresponding displacement contours were compared with those of reference solutions. The results indicate that a sparse distribution of FBG sensors (uniaxial strain measurements), aligned in only the longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses (deformed shapes) of the panel, including a true zigzag representation of interfacial displacements. On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements) is essentially enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM methodology is proven for three-dimensional shape-sensing of future aerospace structures.
机译:本文研究了传感器密度和对准对飞机翼形厚板在三种不同载荷条件(即弯曲,扭转和膜载荷)下进行三维形状感测的影响。为了对面板进行形状感测分析,将反向有限元方法(iFEM)与精细曲折理论(RZT)一起使用,以便能够准确预测横向位移和界面位移的整个厚度变化。在这项研究中,iFEM-RZT算法是通过利用称为i3-RZT的新型三节点C°连续反壳元素实现的。通过在机翼形面板上执行高保真有限元分析,可以数值生成离散应变数据。该数字应变数据表示从表面贴片应变仪或嵌入式光纤布拉格光栅(FBG)传感器获得的实验应变读数。检查了三种不同密度和应变数据对齐方式的传感器放置配置,并将其相应的位移轮廓与参考溶液进行了比较。结果表明,仅沿纵向排列的FBG传感器的稀疏分布(单轴应变测量)足以预测面板的精确全场膜和弯曲响应(变形的形状),包括界面的真实之字形表示位移。另一方面,应变花环的稀疏部署(三轴应变测量)基本上足以产生与密集传感器放置配置所预测的形状一样精确的扭转形状。因此,i3-RZT / iFEM方法论的潜在适用性和实践方面被证明可用于未来航空航天结构的三维形状感测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号