首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Fabrication and Operation of a Nano-Optical Conveyor Belt
【2h】

Fabrication and Operation of a Nano-Optical Conveyor Belt

机译:纳米光学传送带的制造与操作

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The technique of using focused laser beams to trap and exert forces on small particles has enabled many pivotal discoveries in the nanoscale biological and physical sciences over the past few decades. The progress made in this field invites further study of even smaller systems and at a larger scale, with tools that could be distributed more easily and made more widely available. Unfortunately, the fundamental laws of diffraction limit the minimum size of the focal spot of a laser beam, which makes particles smaller than a half-wavelength in diameter hard to trap and generally prevents an operator from discriminating between particles which are closer together than one half-wavelength. This precludes the optical manipulation of many closely-spaced nanoparticles and limits the resolution of optical-mechanical systems. Furthermore, manipulation using focused beams requires beam-forming or steering optics, which can be very bulky and expensive. To address these limitations in the system scalability of conventional optical trapping our lab has devised an alternative technique which utilizes near-field optics to move particles across a chip. Instead of focusing laser beams in the far-field, the optical near field of plasmonic resonators produces the necessary local optical intensity enhancement to overcome the restrictions of diffraction and manipulate particles at higher resolution. Closely-spaced resonators produce strong optical traps which can be addressed to mediate the hand-off of particles from one to the next in a conveyor-belt-like fashion. Here, we describe how to design and produce a conveyor belt using a gold surface patterned with plasmonic C-shaped resonators and how to operate it with polarized laser light to achieve super-resolution nanoparticle manipulation and transport. The nano-optical conveyor belt chip can be produced using lithography techniques and easily packaged and distributed.
机译:在过去的几十年中,使用聚焦激光束捕获小颗粒并在小颗粒上施加力的技术使纳米生物学和物理科学领域取得了许多关键发现。在该领域取得的进展促使人们对更小的系统和更大的规模进行进一步的研究,其工具可以更容易地分发并且可以更广泛地使用。不幸的是,衍射的基本定律限制了激光束焦点的最小尺寸,这使得直径小于半个波长的粒子难以捕获,并且通常阻止操作者区分彼此靠近的粒子而不是一半的粒子。 -波长。这排除了对许多紧密间隔的纳米粒子的光学操纵,并限制了光学机械系统的分辨率。此外,使用聚焦束的操纵需要束形成或转向光学器件,这可能非常庞大且昂贵。为了解决常规光学陷阱的系统可扩展性中的这些限制,我们的实验室设计了一种替代技术,该技术利用近场光学器件在整个芯片上移动粒子。等离子体共振器的光学近场不是将激光束聚焦在远场,而是产生必要的局部光学强度增强,以克服衍射的限制并以更高的分辨率处理粒子。间隔较近的谐振器会产生很强的光阱,可以解决这些问题,以类似于传送带的方式调解颗粒从一个到另一个的传递。在这里,我们描述了如何设计和制造带有等离子C形谐振器图案的金表面的输送带,以及如何使用偏振激光对其进行操作以实现超分辨率纳米粒子的操纵和运输。纳米光学传送带芯片可以使用光刻技术生产,并且易于包装和分配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号