首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials
【2h】

A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials

机译:评估软生物材料高应变速率机械响应的耦合实验-有限元建模方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study offers a combined experimental and finite element (FE) simulation approach for examining the mechanical behavior of soft biomaterials (e.g. brain, liver, tendon, fat, etc.) when exposed to high strain rates. This study utilized a Split-Hopkinson Pressure Bar (SHPB) to generate strain rates of 100-1,500 sec-1. The SHPB employed a striker bar consisting of a viscoelastic material (polycarbonate). A sample of the biomaterial was obtained shortly postmortem and prepared for SHPB testing. The specimen was interposed between the incident and transmitted bars, and the pneumatic components of the SHPB were activated to drive the striker bar toward the incident bar. The resulting impact generated a compressive stress wave (i.e. incident wave) that traveled through the incident bar. When the compressive stress wave reached the end of the incident bar, a portion continued forward through the sample and transmitted bar (i.e. transmitted wave) while another portion reversed through the incident bar as a tensile wave (i.e. reflected wave). These waves were measured using strain gages mounted on the incident and transmitted bars. The true stress-strain behavior of the sample was determined from equations based on wave propagation and dynamic force equilibrium. The experimental stress-strain response was three dimensional in nature because the specimen bulged. As such, the hydrostatic stress (first invariant) was used to generate the stress-strain response. In order to extract the uniaxial (one-dimensional) mechanical response of the tissue, an iterative coupled optimization was performed using experimental results and Finite Element Analysis (FEA), which contained an Internal State Variable (ISV) material model used for the tissue. The ISV material model used in the FE simulations of the experimental setup was iteratively calibrated (i.e. optimized) to the experimental data such that the experiment and FEA strain gage values and first invariant of stresses were in good agreement.
机译:这项研究提供了一种组合的实验和有限元(FE)模拟方法,用于检查软生物材料(如大脑,肝脏,肌腱,脂肪等)暴露于高应变速率时的力学行为。这项研究利用Split-Hopkinson压力棒(SHPB)产生100-1,500 sec -1 的应变速率。 SHPB使用了由粘弹性材料(聚碳酸酯)组成的撞针。死后不久获得了该生物材料的样品,并准备用于SHPB测试。将样本置于入射杆和透射杆之间,并激活SHPB的气动组件以将撞针杆推向入射杆。产生的冲击产生了穿过入射棒的压应力波(即入射波)。当压应力波到达入射棒的末端时,一部分继续向前穿过样品和透射棒(即透射波),而另一部分则作为张力波(即反射波)而反向穿过入射棒。使用安装在入射和透射棒上的应变计测量这些波。样品的真实应力-应变行为是根据基于波传播和动态力平衡的方程式确定的。由于样品凸出,所以实验应力-应变响应本质上是三维的。这样,静水压力(第一不变)被用来产生应力应变响应。为了提取组织的单轴(一维)机械响应,使用实验结果和有限元分析(FEA)进行了迭代耦合优化,其中包含了用于组织的内部状态变量(ISV)材料模型。将实验设置的有限元模拟中使用的ISV材料模型迭代校准(即优化)到实验数据,以使实验和FEA应变计值和应力的第一不变性完全吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号