首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >High-Sensitivity Nuclear Magnetic Resonance at Giga-Pascal Pressures: A New Tool for Probing Electronic and Chemical Properties of Condensed Matter under Extreme Conditions
【2h】

High-Sensitivity Nuclear Magnetic Resonance at Giga-Pascal Pressures: A New Tool for Probing Electronic and Chemical Properties of Condensed Matter under Extreme Conditions

机译:千兆帕斯卡压力下的高灵敏度核磁共振:极端条件下探测凝聚态电子和化学性质的新工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nuclear Magnetic Resonance (NMR) is one of the most important techniques for the study of condensed matter systems, their chemical structure, and their electronic properties. The application of high pressure enables one to synthesize new materials, but the response of known materials to high pressure is a very useful tool for studying their electronic structure and developing theories. For example, high-pressure synthesis might be at the origin of life; and understanding the behavior of small molecules under extreme pressure will tell us more about fundamental processes in our universe. It is no wonder that there has always been great interest in having NMR available at high pressures. Unfortunately, the desired pressures are often well into the Giga-Pascal (GPa) range and require special anvil cell devices where only very small, secluded volumes are available. This has restricted the use of NMR almost entirely in the past, and only recently, a new approach to high-sensitivity GPa NMR, which has a resonating micro-coil inside the sample chamber, was put forward. This approach enables us to achieve high sensitivity with experiments that bring the power of NMR to Giga-Pascal pressure condensed matter research. First applications, the detection of a topological electronic transition in ordinary aluminum metal and the closing of the pseudo-gap in high-temperature superconductivity, show the power of such an approach. Meanwhile, the range of achievable pressures was increased tremendously with a new generation of anvil cells (up to 10.1 GPa), that fit standard-bore NMR magnets. This approach might become a new, important tool for the investigation of many condensed matter systems, in chemistry, geochemistry, and in physics, since we can now watch structural changes with the eyes of a very versatile probe.
机译:核磁共振(NMR)是研究凝聚态系统,其化学结构和电子性质的最重要技术之一。高压的应用使人们能够合成新材料,但是已知材料对高压的响应是研究其电子结构和发展理论的非常有用的工具。例如,高压合成可能是生命的起源。理解小分子在极端压力下的行为,将使我们更多地了解宇宙中的基本过程。难怪人们一直对在高压下使用NMR感兴趣。不幸的是,所需的压力通常很好地达到了千兆帕斯卡(GPa)的范围,并且需要特殊的砧座装置,这些装置只能提供非常小的,僻静的体积。这在过去几乎完全限制了NMR的使用,直到最近,才提出了一种高灵敏度GPa NMR的新方法,该方法在样品室内具有共振的微线圈。这种方法使我们能够通过将NMR的能力带入千兆帕斯卡压力冷凝物研究的实验来实现高灵敏度。最初的应用,即普通铝金属中拓扑电子跃迁的检测以及高温超导中伪间隙的闭合,证明了这种方法的功效。同时,适用于标准孔NMR磁体的新一代砧室(高达10.1 GPa)极大地增加了可达到的压力范围。这种方法可能成为研究许多化学,地球化学和物理学中的凝聚态系统的重要工具,因为我们现在可以用非常通用的探头观察结构变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号