首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Epitaxial Growth of Perovskite Strontium Titanate on Germanium via Atomic Layer Deposition
【2h】

Epitaxial Growth of Perovskite Strontium Titanate on Germanium via Atomic Layer Deposition

机译:通过原子层沉积在钛锗上外延生长钙钛矿锶钛酸盐

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Atomic layer deposition (ALD) is a commercially utilized deposition method for electronic materials. ALD growth of thin films offers thickness control and conformality by taking advantage of self-limiting reactions between vapor-phase precursors and the growing film. Perovskite oxides present potential for next-generation electronic materials, but to-date have mostly been deposited by physical methods. This work outlines a method for depositing SrTiO3 (STO) on germanium using ALD. Germanium has higher carrier mobilities than silicon and therefore offers an alternative semiconductor material with faster device operation. This method takes advantage of the instability of germanium's native oxide by using thermal deoxidation to clean and reconstruct the Ge (001) surface to the 2×1 structure. 2-nm thick, amorphous STO is then deposited by ALD. The STO film is annealed under ultra-high vacuum and crystallizes on the reconstructed Ge surface. Reflection high-energy electron diffraction (RHEED) is used during this annealing step to monitor the STO crystallization. The thin, crystalline layer of STO acts as a template for subsequent growth of STO that is crystalline as-grown, as confirmed by RHEED. In situ X-ray photoelectron spectroscopy is used to verify film stoichiometry before and after the annealing step, as well as after subsequent STO growth. This procedure provides framework for additional perovskite oxides to be deposited on semiconductors via chemical methods in addition to the integration of more sophisticated heterostructures already achievable by physical methods.
机译:原子层沉积(ALD)是一种用于电子材料的商业化沉积方法。通过利用气相前驱物与生长膜之间的自限反应,薄膜的ALD生长可提供厚度控制和保形性。钙钛矿氧化物具有用于下一代电子材料的潜力,但迄今为止,大多数已通过物理方法沉积。这项工作概述了使用ALD在锗上沉积SrTiO3(STO)的方法。锗具有比硅更高的载流子迁移率,因此提供了一种具有更快器件运行速度的替代半导体材料。该方法通过使用热脱氧将Ge(001)表面清洁和重建为2×1结构,从而利用了锗天然氧化物的不稳定性。然后通过ALD沉积2纳米厚的非晶态STO。 STO膜在超高真空下退火,并在重建的Ge表面上结晶。在此退火步骤中,使用了反射高能电子衍射(RHEED)来监控STO结晶。如RHEED所证实的那样,STO的薄结晶层充当随后生长的STO的模板,而STO则是结晶生长的。原位X射线光电子能谱用于验证退火步骤之前和之后以及随后的STO生长之后的薄膜化学计量。该程序为通过化学方法沉积在半导体上的其他钙钛矿氧化物提供了框架,此外还集成了通过物理方法已经可以实现的更复杂的异质结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号