首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Characterizing Multiscale Mechanical Properties of Brain Tissue Using Atomic Force Microscopy Impact Indentation and Rheometry
【2h】

Characterizing Multiscale Mechanical Properties of Brain Tissue Using Atomic Force Microscopy Impact Indentation and Rheometry

机译:使用原子力显微镜冲击压痕和流变仪表征脑组织的多尺度机械性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To design and engineer materials inspired by the properties of the brain, whether for mechanical simulants or for tissue regeneration studies, the brain tissue itself must be well characterized at various length and time scales. Like many biological tissues, brain tissue exhibits a complex, hierarchical structure. However, in contrast to most other tissues, brain is of very low mechanical stiffness, with Young's elastic moduli E on the order of 100s of Pa. This low stiffness can present challenges to experimental characterization of key mechanical properties. Here, we demonstrate several mechanical characterization techniques that have been adapted to measure the elastic and viscoelastic properties of hydrated, compliant biological materials such as brain tissue, at different length scales and loading rates. At the microscale, we conduct creep-compliance and force relaxation experiments using atomic force microscope-enabled indentation. At the mesoscale, we perform impact indentation experiments using a pendulum-based instrumented indenter. At the macroscale, we conduct parallel plate rheometry to quantify the frequency dependent shear elastic moduli. We also discuss the challenges and limitations associated with each method. Together these techniques enable an in-depth mechanical characterization of brain tissue that can be used to better understand the structure of brain and to engineer bio-inspired materials.
机译:为了设计和制造受大脑特性启发的材料,无论是用于机械模拟物还是用于组织再生研究,必须在各种长度和时间范围内对脑组织本身进行充分表征。像许多生物组织一样,脑组织表现出复杂的层次结构。但是,与大多数其他组织相比,大脑的机械刚度非常低,杨氏弹性模量E约为Pa的100s。这种低刚度可能对关键机械性能的实验表征提出挑战。在这里,我们展示了几种机械表征技术,这些技术已经适应了在不同的长度比例和加载速率下测量水合顺应性生物材料(例如脑组织)的弹性和粘弹性的特性。在微观尺度上,我们使用原子力显微镜启用的压痕进行蠕变顺应性和力松弛实验。在中尺度上,我们使用基于摆锤的仪器压头进行冲击压痕实验。在宏观上,我们进行平行板流变仪以量化频率相关的剪切弹性模量。我们还将讨论与每种方法相关的挑战和局限性。这些技术结合在一起,可以对脑组织进行深入的机械表征,从而可以更好地理解大脑的结构并设计生物启发的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号