首页> 美国卫生研究院文献>Chemical Science >High electrical conductivity and high porosity in a Guest@MOF material: evidence of TCNQ ordering within Cu3BTC2 micropores
【2h】

High electrical conductivity and high porosity in a Guest@MOF material: evidence of TCNQ ordering within Cu3BTC2 micropores

机译:Guest @ MOF材料中的高电导率和高孔隙率:Cu3BTC2微孔内TCNQ有序的证据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The host–guest system TCNQ@Cu3BTC2 (TCNQ = 7,7,8,8-tetracyanoquinodimethane, BTC = 1,3,5-benzenetricarboxylate) is a striking example of how semiconductivity can be introduced by guest incorporation in an otherwise insulating parent material. Exhibiting both microporosity and semiconducting behavior such materials offer exciting opportunities as next-generation sensor materials. Here, we apply a solvent-free vapor phase loading under rigorous exclusion of moisture, obtaining a series of the general formula xTCNQ@Cu3BTC2 (0 ≤ x ≤ 1.0). By using powder X-ray diffraction, infrared and X-ray absorption spectroscopy together with scanning electron microscopy and porosimetry, we provide the first structural evidence for a systematic preferential arrangement of TCNQ along the (111) lattice plane and the bridging coordination motif to two neighbouring Cu-paddlewheels, as was predicted by theory. For 1.0TCNQ@Cu3BTC2 we find a specific electrical conductivity of up to 1.5 × 10–4 S cm–1 whilst maintaining a high BET surface area of 573.7 m2 g–1. These values are unmatched by MOFs with equally high electrical conductivity, making the material attractive for applications such as super capacitors and chemiresistors. Our results represent the crucial missing link needed to firmly establish the structure–property relationship revealed in TCNQ@Cu3BTC2, thereby creating a sound basis for using this as a design principle for electrically conducting MOFs.
机译:主客体系统TCNQ @ Cu3BTC2(TCNQ = 7,7,8,8-四氰基喹二甲烷,BTC = 1,3,5-苯三羧酸酯)是一个引人注目的示例,说明了如何通过客人掺入其他绝缘母体材料中引入半导电性。这种材料既具有微孔性又具有半导体性能,因此作为下一代传感器材料提供了令人兴奋的机会。在这里,我们在严格排除水分的条件下施加无溶剂气相负载,获得了一系列通式xTCNQ @ Cu3BTC2(0≤x≤1.0)。通过使用粉末X射线衍射,红外和X射线吸收光谱以及扫描电子显微镜和孔隙率法,我们提供了第一个结构证据,表明TCNQ沿着(111)晶格系统优先排列,并且桥连配位基为两个如理论所预言的,邻近的铜桨轮。对于1.0TCNQ@Cu3BTC2,我们发现比电导率最高为1.5×10 –4 S cm –1 ,同时保持BET表面积为573.7 m 2 g –1 。这些值是具有同样高电导率的MOF所无法比拟的,这使得该材料对诸如超级电容器和化学电阻器等应用具有吸引力。我们的结果代表了牢固建立TCNQ @ Cu3BTC2中揭示的结构与属性关系所需的关键缺失环节,从而为将其用作导电MOF的设计原理奠定了良好的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号