首页> 美国卫生研究院文献>The Journal of Physiology >Adaptation of the vestibulo-ocular reflex for forward-eyed foveate vision
【2h】

Adaptation of the vestibulo-ocular reflex for forward-eyed foveate vision

机译:前眼眼反射适应性眼正视眼前视

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To maintain visual fixation on a distant target during head rotation, the angular vestibulo-ocular reflex (aVOR) should rotate the eyes at the same speed as the head and in exactly the opposite direction. However, in primates for which the 3-dimensional (3D) aVOR has been extensively characterised (humans and squirrel monkeys (Saimiri sciureus)), the aVOR response to roll head rotation about the naso-occipital axis is lower than that elicited by yaw and pitch, causing errors in aVOR magnitude and direction that vary with the axis of head rotation. In other words, primates keep the central part of the retinal image on the fovea (where photoreceptor density and visual acuity are greatest) but fail to keep that image from twisting about the eyes' resting optic axes. We tested the hypothesis that aVOR direction dependence is an adaptation related to primates' frontal-eyed, foveate status through comparison with the aVOR of a lateral-eyed, afoveate mammal (Chinchilla lanigera). As chinchillas' eyes are afoveate and never align with each other, we predicted that the chinchilla aVOR would be relatively low in gain and isotropic (equal in gain for every head rotation axis). In 11 normal chinchillas, we recorded binocular 3D eye movements in darkness during static tilts, 20–100 deg s−1 whole-body sinusoidal rotations (0.5–15 Hz), and 3000 deg s−2 acceleration steps. Although the chinchilla 3D aVOR gain changed with both frequency and peak velocity over the range we examined, we consistently found that it was more nearly isotropic than the primate aVOR. Our results suggest that primates' anisotropic aVOR represents an adaptation to their forward-eyed, foveate status. In primates, yaw and pitch aVOR must be compensatory to stabilise images on both foveae, whereas roll aVOR can be under-compensatory because the brain tolerates torsion of binocular images that remain on the foveae. In contrast, the lateral-eyed chinchilla faces different adaptive demands and thus enlists a different aVOR strategy.
机译:为了在头部旋转过程中将视觉固定在遥远的目标上,前庭眼角反射(aVOR)应以与头部相同的速度并沿完全相反的方向旋转眼睛。但是,在已广泛表征了3维(3D)aVOR的灵长类动物(人和松鼠猴(Saimiri sciureus))中,对roll头绕鼻枕轴旋转的aVOR响应比偏航和偏航引起的响应低。倾斜,导致aVOR大小和方向的误差随磁头旋转轴而变化。换句话说,灵长类动物将视网膜图像的中央部分保留在中央凹处(那里的感光体密度和视敏度最大),但不能阻止该图像绕眼睛的静止视轴扭曲。我们通过与侧眼眼,侧眼眼哺乳动物(Chinchilla lanigera)的aVOR进行比较,检验了aVOR方向依赖性是与灵长类动物的额眼,眼前眼状态相关的适应性假设。由于龙猫的眼睛是先天性的,并且永远不会彼此对齐,我们预测黄鼠的aVOR的增益和各向同性(相对于每个头部旋转轴的增益)将相对较低。在11个正常龙猫中,我们记录了在静态倾斜,20–100度s −1 全身正弦旋转(0.5–15 Hz)和3000度s 期间在黑暗中的双眼3D眼睛运动−2 加速步骤。尽管在我们研究的范围内,栗鼠3D aVOR增益随频率和峰值速度而变化,但我们始终发现它比灵长类动物aVOR更接近各向同性。我们的研究结果表明,灵长类动物的各向异性aVOR代表着对它们的前眼,眼前状态的适应。在灵长类动物中,偏航和俯仰aVOR必须是补偿性的,才能使两个中央凹上的图像稳定,而侧倾aVOR可能是补偿性的,因为大脑可以容忍保留在中央凹上的双目图像的扭转。相反,侧眼黄鼠面对不同的适应性需求,因此需要不同的aVOR策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号