首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Micro- and nano-structural details of a spiders filter for substrate vibrations: relevance for low-frequency signal transmission
【2h】

Micro- and nano-structural details of a spiders filter for substrate vibrations: relevance for low-frequency signal transmission

机译:用于基底振动的蜘蛛滤波器的微观和纳米结构细节:与低频信号传输的相关性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The metatarsal lyriform organ of the Central American wandering spider Cupiennius salei is its most sensitive vibration detector. It is able to sense a wide range of vibration stimuli over four orders of magnitude in frequency between at least as low as 0.1 Hz and several kilohertz. Transmission of the vibrations to the slit organ is controlled by a cuticular pad in front of it. While the mechanism of high-frequency stimulus transfer (above ca 40 Hz) is well understood and related to the viscoelastic properties of the pad's epicuticle, it is not yet clear how low-frequency stimuli (less than 40 Hz) are transmitted. Here, we study how the pad material affects the pad's mechanical properties and thus its role in the transfer of the stimulus, using a variety of experimental techniques, such as X-ray micro-computed tomography for three-dimensional imaging, X-ray scattering for structural analysis, and atomic force microscopy and scanning electron microscopy for surface imaging. The mechanical properties were investigated using scanning acoustic microscopy and nanoindentation. We show that large tarsal deflections cause large deformation in the distal highly hydrated part of the pad. Beyond this region, a sclerotized region serves as a supporting frame which resists the deformation and is displaced to push against the slits, with displacement values considerably scaled down to only a few micrometres. Unravelling the structural arrangement in such specialized structures may provide conceptual ideas for the design of new materials capable of controlling a technical sensor's specificity and selectivity, which is so typical of biological sensors.
机译:中美洲游走蜘蛛Cupiennius salei的ly骨腹状器官是其最灵敏的振动探测器。它能够在至少低至0.1 Hz到几千赫兹的频率范围内的四个数量级上感应广泛的振动刺激。振动传递到狭缝器官是由其前面的表皮垫控制的。虽然高频刺激传递的机制(约40 Hz以上)已广为人知并与打击垫表皮的粘弹性有关,但尚不清楚低频刺激(小于40 Hz)如何传播。在这里,我们使用多种实验技术,例如用于三维成像的X射线微计算机断层扫描,X射线散射,研究垫材料如何影响垫的机械性能,从而影响其在刺激传递中的作用。用于结构分析,原子力显微镜和扫描电子显微镜用于表面成像。使用扫描声显微镜和纳米压痕研究了机械性能。我们显示,大的骨挠曲会在远端的高度水合部分造成较大的变形。在该区域之外,硬化区域用作抵抗变形的支撑框架并且被移位以推向狭缝,移位值被显着缩小至仅几微米。揭开这种特殊结构的结构安排可能会为能够控制技术传感器的特异性和选择性的新材料的设计提供概念上的想法,这是生物传感器的典型特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号