首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Engineering a more sustainable world through catalysis and green chemistry
【2h】

Engineering a more sustainable world through catalysis and green chemistry

机译:通过催化和绿色化学工程设计一个更可持续发展的世界

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The grand challenge facing the chemical and allied industries in the twenty-first century is the transition to greener, more sustainable manufacturing processes that efficiently use raw materials, eliminate waste and avoid the use of toxic and hazardous materials. It requires a paradigm shift from traditional concepts of process efficiency, focusing on chemical yield, to one that assigns economic value to replacing fossil resources with renewable raw materials, eliminating waste and avoiding the use of toxic and/or hazardous substances. The need for a greening of chemicals manufacture is readily apparent from a consideration of the amounts of waste generated per kilogram of product (the E factors) in various segments of the chemical industry. A primary source of this waste is the use of antiquated ‘stoichiometric’ technologies and a major challenge is to develop green, catalytic alternatives. Another grand challenge for the twenty-first century, driven by the pressing need for climate change mitigation, is the transition from an unsustainable economy based on fossil resources—oil, coal and natural gas—to a sustainable one based on renewable biomass. In this context, the valorization of waste biomass, which is currently incinerated or goes to landfill, is particularly attractive. The bio-based economy involves cross-disciplinary research at the interface of biotechnology and chemical engineering, focusing on the development of green, chemo- and biocatalytic technologies for waste biomass conversion to biofuels, chemicals and bio-based materials. Biocatalysis has many benefits to offer in this respect. The catalyst is derived from renewable biomass and is biodegradable. Processes are performed under mild conditions and generally produce less waste and are more energy efficient than conventional ones. Thanks to modern advances in biotechnology ‘tailor-made’ enzymes can be economically produced on a large scale. However, for economic viability it is generally necessary to recover and re-use the enzyme and this can be achieved by immobilization, e.g. as solid cross-linked enzyme aggregates (CLEAs), enabling separation by filtration or centrifugation. A recent advance is the use of ‘smart’, magnetic CLEAs, which can be separated magnetically from reaction mixtures containing suspensions of solids; truly an example of cross-disciplinary research at the interface of physical and life sciences, which is particularly relevant to biomass conversion processes.
机译:在二十一世纪,化学和相关工业面临的巨大挑战是向更绿色,更具可持续性的制造过程过渡,以有效利用原材料,消除浪费并避免使用有毒有害物质。它要求从传统的过程效率概念(侧重于化学收率)转变为将经济价值赋予以可再生原料代替化石资源,消除浪费并避免使用有毒和/或有害物质的范式。考虑到化学工业各个领域中每千克产品产生的废物量(E因子),很明显需要绿色化学制品。这些废物的主要来源是使用过时的“化学计量”技术,而主要的挑战是开发绿色的催化替代品。在迫切需要缓解气候变化的推动下,二十一世纪的另一大挑战是从基于石油,煤炭和天然气等化石资源的不可持续经济向基于可再生生物量的可持续经济过渡。在这种情况下,目前已被焚化或进入垃圾掩埋场的废物生物质的估价特别有吸引力。生物基经济涉及生物技术和化学工程界的跨学科研究,重点是发展绿色,化学和生物催化技术,以将废物生物质转化为生物燃料,化学物质和生物基材料。在这方面,生物催化具有许多好处。该催化剂衍生自可再生的生物质,并且是可生物降解的。该工艺在温和的条件下进行,与传统工艺相比,通常产生更少的废物并且更节能。由于生物技术的现代发展,“量身定制的”酶可以经济地大规模生产。但是,为了经济上的可行性,通常必须回收和再利用该酶,这可以通过固定例如,通过酶的方法来实现。作为固体交联酶聚集体(CLEA),可通过过滤或离心分离。最近的进展是使用了“智能”磁性CLEA,可以将其与含有固体悬浮液的反应混合物磁性分离。在物理和生命科学的界面上,这确实是跨学科研究的一个例子,这与生物质转化过程特别相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号