首页> 美国卫生研究院文献>Biophysical Journal >Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures.
【2h】

Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures.

机译:在低于零温度的高频电场中红细胞的变形性和稳定性。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High-frequency electric fields can be used to induce deformation of red blood cells. In the temperature domain T = 0 degrees to -15 degrees C (supercooled suspension) and for 25 degrees C this paper examines for human erythrocytes (discocytes, young cell population suspended in a low ionic strength solution with conductivity sigma(25 degrees) = 154 microS/cm) in a sinusoidal electric field (nu = 1 MHz, E0 = 0-18 kV/cm) the following properties and effects as a function of field strength and temperature: 1) viscoelastic response, 2) (shear) deformation (steady-state value obtained from the viscoelastic response time), 3) stability (by experimentally observed breakdown of cell polarization and hemolysis), 4) electrical membrane breakdown and field-induced hemolysis (theoretical calculations for ellipsoidal particles), and 5) mechanical hemolysis. The items 2-4 were also examined for the frequency nu = 100 kHz and for a nonionic solution of very low conductivity (sigma(25 degrees) = 10 microS/cm) to support our interpretations of the results for 1 MHz. Below 0 degrees C with decreasing temperature the viscoelastic response time tau(res)(T) for the cells to reach steady-state deformation values d(infinity,E) increases and the deformation d(infinity,E)(T) decreases strongly. Both effects are especially high for low field strengths. The longest response time of approximately 30 s was obtained for -15 degrees C and small deformations. For 1 MHz the cells can be highly elongated up to 2.3 times their initial diameter a0 for 25 degrees and 0 degrees C, 2.1a0 for -10 degrees C and still 1.95a0 for -15 degrees C. For T > or = 0 degrees C the deformation is limited by hemolysis of the cells, which sets in for E0(lysis)(25 degrees) approximately 8 kV/cm and E0(lysis)(0 degrees) approximately 14 kV/cm. These values are approximately three times higher than the corresponding calculated critical field strengths for electrically induced pore formation. Nevertheless, the observed depolarization and hemolysis of the cells is provoked by electrical membrane breakdown rather than by mechanical forces due to the high deformation. For the nonionic solution, where no electrical breakdown is expected in the whole range for E0, the cells can indeed be deformed to even higher values with a low hemolytic rate. Below 0 degrees C we observe no hemolysis at all, not even for the frequency 100 kHz, where the cells hemolyze at 25 degrees C for the much lower field strength E0(lysis) approximately 2.5 kV/cm. Obviously, pore formation and growth are weak for subzero temperatures.
机译:高频电场可用于诱导红细胞变形。在温度范围T = 0到-15摄氏度(过冷悬浮液)中,在25摄氏度的温度下,本文研究了人类红细胞(碟状细胞,悬浮在电导率σ(25度)= 154的低离子强度溶液中的年轻细胞群) microS / cm)在正弦电场(nu = 1 MHz,E0 = 0-18 kV / cm)中随场强和温度的变化具有以下特性和作用:1)粘弹性响应,2)(剪切)变形(从粘弹性响应时间获得的稳态值),3)稳定性(通过实验观察到的细胞极化和溶血作用的破裂),4)电膜破裂和场致溶血作用(椭圆形颗粒的理论计算)和5)机械溶血作用。还检查了2-4项的频率nu = 100 kHz和电导率非常低的非离子溶液(σ(25度)= 10 microS / cm),以支持我们对1 MHz的结果的解释。在低于0摄氏度且温度降低的情况下,细胞达到稳态变形值d(infinity,E)的粘弹性响应时间tau(res)(T)增大,而变形d(infinity,E)(T)则大大降低。对于低场强,两种效果都特别高。在-15摄氏度和很小的变形下,可获得大约30 s的最长响应时间。对于1 MHz,单元可以高度伸长至25摄氏度和0摄氏度初始直径a0的2.3倍,-10摄氏度为2.1a0以及-15摄氏度仍为1.95a0的初始直径。对于T>或= 0摄氏度变形受到细胞溶血的限制,E0(裂解)(25度)约为8 kV / cm,E0(裂解)(0度)约为14 kV / cm。这些值大约比为电感应孔形成而计算出的临界场强高出三倍。然而,观察到的细胞去极化和溶血是由于膜的电击穿而不是由于高变形引起的机械力引起的。对于非离子溶液,在整个E0范围内都不会发生电击穿的情况下,细胞确实可以低溶血速率变形为更高的值。在0摄氏度以下,我们观察不到根本没有溶血现象,即使在100 kHz频率下也没有发现溶血现象,在25摄氏度下,细胞对于大约2.5 kV / cm的更低的场强E0(裂解)会在25摄氏度下溶血。显然,零度以下的温度下孔的形成和生长很弱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号