首页> 美国卫生研究院文献>AMIA Annual Symposium Proceedings >Clinical Document Classification Using Labeled and Unlabeled Data Across Hospitals
【2h】

Clinical Document Classification Using Labeled and Unlabeled Data Across Hospitals

机译:跨医院使用标记和未标记数据的临床文件分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Reviewing radiology reports in emergency departments is an essential but laborious task. Timely follow-up of patients with abnormal cases in their radiology reports may dramatically affect the patient’s outcome, especially if they have been discharged with a different initial diagnosis. Machine learning approaches have been devised to expedite the process and detect the cases that demand instant follow up. However, these approaches require a large amount of labeled data to train reliable predictive models. Preparing such a large dataset, which needs to be manually annotated by health professionals, is costly and time-consuming. This paper investigates a semi-supervised transfer learning framework for radiology report classification across three hospitals. The main goal is to leverage both vastly available clinical unlabeled data and already learned knowledge in order to improve a learning model where limited labeled data is available. Our experimental findings show that (1) convolutional neural networks (CNNs), while being independent of any problem-specific feature engineering, achieve significantly higher effectiveness compared to conventional supervised learning approaches, (2) leveraging unlabeled data in training a CNN-based classifier reduces the dependency on labeled data by more than 50% to reach the same performance of a fully supervised CNN, and (3) transferring the knowledge gained from available labeled data in an external source hospital significantly improves the performance of a semi-supervised CNN model over their fully supervised counterparts in a target hospital.
机译:在急诊科中检查放射学报告是一项必不可少的工作。对放射线报告中异常病例的患者进行及时随访可能会极大地影响患者的治疗效果,特别是如果他们已经出院时具有不同的初始诊断。已经设计了机器学习方法来加快过程并检测需要立即跟进的情况。但是,这些方法需要大量的标记数据来训练可靠的预测模型。准备如此大的数据集(需要由卫生专业人员手动注释)既昂贵又费时。本文研究了三所医院放射学报告分类的半监督转移学习框架。主要目标是利用大量可用的临床未标记数据和已经学习的知识,以改进可获取有限标记数据的学习模型。我们的实验结果表明(1)卷积神经网络(CNN)独立于任何特定于问题的特征工程,但与传统的监督学习方法相比,其有效性要高得多;(2)利用未标记的数据训练基于CNN的分类器减少对标记数据的依赖性超过50%,以达到完全受监管的CNN的相同性能;(3)在外部来源医院中转移从可用标记数据中获得的知识,显着改善了半监督CNN模型的性能在目标医院接受全面监督的同行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号