首页> 美国卫生研究院文献>Applied Physics Letters >Extraction of diffuse correlation spectroscopy flow index by integration of Nth-order linear model with Monte Carlo simulation
【2h】

Extraction of diffuse correlation spectroscopy flow index by integration of Nth-order linear model with Monte Carlo simulation

机译:N阶线性模型与蒙特卡洛模拟相结合提取扩散相关光谱流动指数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αDB) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αDB. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo stroke model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αDB (errors < ±2%) from the noise-free DCS data than the semi-infinite solution (errors: −5.3% to −18.0%) for different tissue models. Although adding random noises to DCS data resulted in αDB variations, the mean values of errors in extracting αDB were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αDB using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.
机译:从扩散相关光谱(DCS)测量中提取血流指数(BFI)的常规半无限解决方案可能会在体积小,曲率大的组织中引起BFI(αDB)估计错误。我们提出了一种将自相关函数的N阶线性模型与组织中光子迁移的Monte Carlo模拟相结合的算法,用于提取αDB。被测组织的体积和几何形状被纳入了蒙特卡洛模拟中,克服了半无限的限制。使用计算机模拟在具有不同体积/几何形状的四个组织模型上测试了该算法,并将其应用于小鼠的体内中风模型。计算机仿真表明,高阶(Nsolution≥error5)线性算法从无噪声DCS数据中提取αDB(误差<±2%)比半无限解(误差:-5.3%至-18.0)更准确。 %)用于不同的组织模型。尽管将随机噪声添加到DCS数据中会导致αDB变化,但提取αDB时的误差平均值与从无噪声DCS数据重构的平均值相似。此外,使用线性算法和半无限解法提取αDB的相对变化时的误差很小(误差<±2.0%),并且不依赖于组织体积/几何形状。体内中风小鼠的实验结果与模拟结果一致,证明了线性算法的鲁棒性。具有高阶线性算法的DCS显示出在具有不同体积/几何形状的各种组织/器官中进行对象间比较和纵向监测绝对BFI的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号