首页> 美国卫生研究院文献>The Journal of Chemical Physics >Intrinsic Conductivity of Carbon Nanotubes and Graphene Sheets Having a Realistic Geometry
【2h】

Intrinsic Conductivity of Carbon Nanotubes and Graphene Sheets Having a Realistic Geometry

机译:具有现实几何形状的碳纳米管和石墨烯片的本征电导率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The addition of carbon nanotubes (CNTs) and graphene sheets (GSs) into polymeric materials can greatly enhance the conductivity and alter the electromagnetic response of the resulting nanocomposite material. The extent of these property modifications strongly depends on the structural parameters describing the CNTs and GSs, such as their shape and size, as well as their degree of particle dispersion within the polymeric matrix. To model these property modifications in the dilute particle regime, we determine the leading transport virial coefficients describing the conductivity of CNT and GS composites using a combination of molecular dynamics, path–integral, and finite–element calculations. This approach allows for the treatment of the general situation in which the ratio between the conductivity of the nanoparticles and the polymer matrix is arbitrary so that insulating, semi–conductive, and conductive particles can be treated within a unified framework. We first generate ensembles of CNTs and GSs in the form of self–avoiding worm–like cylinders and perfectly flat and random sheet polymeric structures by using molecular dynamics simulation to model the geometrical shapes of these complex–shaped carbonaceous nanoparticles. We then use path-integral and finite element methods to calculate the electric and magnetic polarizability tensors (>αE, >αM) of the CNT and GS nanoparticles. These properties determine the conductivity virial coefficient [σ] in the conductive and insulating particle limits, which are required to estimate [σ] in the general case in which the conductivity contrast Δ between the nanoparticle and the polymer matrix is arbitrary. Finally, we propose approximate relationships for >αE and >αM that should be useful in materials design and characterization applications.
机译:将碳纳米管(CNT)和石墨烯片(GSs)添加到聚合物材料中可以极大地增强导电性并改变所得纳米复合材料的电磁响应。这些性质改变的程度在很大程度上取决于描述CNT和GS的结构参数,例如它们的形状和大小,以及它们在聚合物基质中的分散程度。为了模拟稀颗粒状态下的这些性能变化,我们结合分子动力学,路径积分和有限元计算,确定了描述CNT和GS复合材料电导率的领先传输病毒系数。这种方法可用于处理一般情况,在这种情况下,纳米颗粒和聚合物基质的电导率之比是任意的,因此可以在统一的框架内处理绝缘,半导电和导电的颗粒。我们首先使用分子动力学模拟对这些复杂形状的碳质纳米颗粒的几何形状进行建模,以自蠕虫状圆柱体以及完美平坦且无规的片状聚合物结构的形式生成CNT和GS的集合体。然后,我们使用路径积分和有限元方法来计算CNT和GS纳米粒子的电和磁极化率张量(>αE,>αM)。这些性质决定了导电和绝缘颗粒极限中的导电率维里系数[σ],在纳米颗粒和聚合物基体之间的导电率对比度Δ是任意的一般情况下,估计这些值是必需的。最后,我们提出了>αE和>αM的近似关系,这些关系在材料设计和表征应用中将很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号