首页> 美国卫生研究院文献>The Journal of Chemical Physics >Full-electron calculation of effective electronic couplings and excitation energies of charge transfer states: Application to hole transfer in DNA π-stacks
【2h】

Full-electron calculation of effective electronic couplings and excitation energies of charge transfer states: Application to hole transfer in DNA π-stacks

机译:有效电子耦合和电荷转移态的激发能的全电子计算:在DNAπ堆中的空穴转移中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work I develop and apply a theoretical method for calculating effective electronic couplings (or transfer integrals) between redox sites involved in hole or electron transfer reactions. The resulting methodology is a refinement and a generalization of a recently developed approach for transfer integral evaluation. In fact, it holds for any overlap between the charge-localized states used to represent charge transfer (CT) processes in the two-state model. The presented theoretical and computational analyses show that the prototype approach is recovered for sufficiently small overlaps. The method does not involve any empirical parameter. It allows a complete multielectron description, therefore including electronic relaxation effects. Furthermore, its theoretical formulation holds at any value of the given reaction coordinate and yields a formula for the evaluation of the vertical excitation energy (i.e., the energy difference between the adiabatic ground and first-excited electronic states) that rests on the same physical quantities used in transfer integral calculation. In this paper the theoretical approach is applied to CT in B-DNA base dimers within the framework of Density Functional Theory (DFT), although it can be implemented in other computational schemes. The results of this work, as compared with previous Hartree–Fock (HF) and post-HF evaluations, support the applicability of the current implementation of the method to larger π-stacked arrays, where post-HF approaches are computationally unfeasible.
机译:在这项工作中,我开发并应用了一种理论方法来计算参与空穴或电子转移反应的氧化还原位点之间的有效电子耦合(或转移积分)。由此产生的方法是对最近开发的转移积分评估方法的完善和概括。实际上,它适用于在两个状态模型中用来表示电荷转移(CT)过程的电荷局部化状态之间的任何重叠。提出的理论和计算分析表明,对于足够小的重叠,可以恢复原型方法。该方法不涉及任何经验参数。它允许完整的多电子描述,因此包括电子弛豫效应。此外,其理论公式适用于给定反应坐标的任何值,并得出一个公式,用于评估基于相同物理量的垂直激发能(即绝热基态和第一激发电子态之间的能量差)用于传递积分计算。尽管可以在其他计算方案中实现,但本文仍将理论方法应用于在密度泛函理论(DFT)框架内的B-DNA基础二聚体的CT中。与先前的Hartree-Fock(HF)和HF后评估相比,这项工作的结果支持了该方法当前实施方案在较大的π堆叠阵列中的适用性,而在这些情况下,HF后方法在计算上是不可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号