首页> 美国卫生研究院文献>Medical Physics >Deformable registration of the inflated and deflated lung in cone-beam CT-guided thoracic surgery: Initial investigation of a combined model- and image-driven approach
【2h】

Deformable registration of the inflated and deflated lung in cone-beam CT-guided thoracic surgery: Initial investigation of a combined model- and image-driven approach

机译:锥形束CT引导的胸外科中充气和放气肺的可变形配准:结合模型和图像驱动方法的初步研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Purpose: Surgical resection is the preferred modality for curative treatment of early stage lung cancer, but localization of small tumors (<10 mm diameter) during surgery presents a major challenge that is likely to increase as more early-stage disease is detected incidentally and in low-dose CT screening. To overcome the difficulty of manual localization (fingers inserted through intercostal ports) and the cost, logistics, and morbidity of preoperative tagging (coil or dye placement under CT-fluoroscopy), the authors propose the use of intraoperative cone-beam CT (CBCT) and deformable image registration to guide targeting of small tumors in video-assisted thoracic surgery (VATS). A novel algorithm is reported for registration of the lung from its inflated state (prior to pleural breach) to the deflated state (during resection) to localize surgical targets and adjacent critical anatomy.>Methods: The registration approach geometrically resolves images of the inflated and deflated lung using a coarse model-driven stage followed by a finer image-driven stage. The model-driven stage uses image features derived from the lung surfaces and airways: triangular surface meshes are morphed to capture bulk motion; concurrently, the airways generate graph structures from which corresponding nodes are identified. Interpolation of the sparse motion fields computed from the bounding surface and interior airways provides a 3D motion field that coarsely registers the lung and initializes the subsequent image-driven stage. The image-driven stage employs an intensity-corrected, symmetric form of the Demons method. The algorithm was validated over 12 datasets, obtained from porcine specimen experiments emulating CBCT-guided VATS. Geometric accuracy was quantified in terms of target registration error (TRE) in anatomical targets throughout the lung, and normalized cross-correlation. Variations of the algorithm were investigated to study the behavior of the model- and image-driven stages by modifying individual algorithmic steps and examining the effect in comparison to the nominal process.>Results: The combined model- and image-driven registration process demonstrated accuracy consistent with the requirements of minimally invasive VATS in both target localization (∼3–5 mm within the target wedge) and critical structure avoidance (∼1–2 mm). The model-driven stage initialized the registration to within a median TRE of 1.9 mm (95% confidence interval (CI) maximum = 5.0 mm), while the subsequent image-driven stage yielded higher accuracy localization with 0.6 mm median TRE (95% CI maximum = 4.1 mm). The variations assessing the individual algorithmic steps elucidated the role of each step and in some cases identified opportunities for further simplification and improvement in computational speed.>Conclusions: The initial studies show the proposed registration method to successfully register CBCT images of the inflated and deflated lung. Accuracy appears sufficient to localize the target and adjacent critical anatomy within ∼1–2 mm and guide localization under conditions in which the target cannot be discerned directly in CBCT (e.g., subtle, nonsolid tumors). The ability to directly localize tumors in the operating room could provide a valuable addition to the VATS arsenal, obviate the cost, logistics, and morbidity of preoperative tagging, and improve patient safety. Future work includes in vivo testing, optimization of workflow, and integration with a CBCT image guidance system.
机译:>目的:手术切除是早期肺癌的首选治疗方法,但是手术过程中小肿瘤(直径<10 mm)的局限性是一个重大挑战,随着更多早期肿瘤的出现,这一挑战可能会增加在低剂量CT筛查中偶然发现了阶段性疾病。为了克服手动定位的困难(手指从肋间口插入)以及术前标记的成本,物流和发病率(CT透视下的线圈或染料放置),作者建议使用术中锥束CT(CBCT)以及可变形的图像配准,以指导视频辅助胸外科(VATS)中小肿瘤的靶向。据报道,有一种新的算法可以将肺部从充气状态(在胸膜破裂之前)到放气状态(在切除期间)进行定位,以定位手术目标和邻近的关键解剖结构。>方法:使用粗略的模型驱动阶段和更精细的图像驱动阶段,解析膨胀和缩小的肺部图像。由模型驱动的阶段使用源自肺表面和气道的图像特征:将三角形表面网格变形以捕获整体运动;同时,气道生成图结构,从中识别相应的节点。从边界表面和内部气道计算的稀疏运动场的插值提供3D运动场,该运动场粗略地记录了肺部并初始化了后续的图像驱动阶段。图像驱动平台采用了魔鬼方法的强度校正对称形式。该算法在12个数据集上得到了验证,该数据集是从模拟CBCT引导的VATS的猪标本实验中获得的。根据整个肺部解剖学目标中的目标配准误差(TRE)和归一化互相关来量化几何精度。通过修改各个算法步骤并检查与名义过程相比的效果,研究了算法的各种变化,以研究模型驱动阶段和图像驱动阶段的行为。>结果:模型和图像的组合驱动的配准过程显示出的准确度与在目标定位(目标楔形物内约3-5 mm)和避免关键结构(约1-2 mm)中的微创VATS的要求一致。模型驱动阶段将配准初始化到中值TRE为1.9毫米(95%置信区间(CI)最大= 5.0毫米)之内,而随后的图像驱动阶段以0.6毫米中值TRE(95%CI)产生更高的定位精度最大= 4.1毫米)。评估各个算法步骤的差异阐明了每个步骤的作用,并在某些情况下确定了进一步简化和提高计算速度的机会。>结论:初步研究表明,提出的配准方法可以成功配准CBCT图像膨胀和缩小的肺部。准确度似乎足以将靶标和邻近的关键解剖部位定位在1-2 mm以内,并在无法直接在CBCT中识别出靶标的条件下(例如,细微的非实体瘤)指导定位。将肿瘤直接定位在手术室中的能力可以为VATS武库提供有价值的补充,避免了术前标记的成本,物流和发病率,并提高了患者安全性。未来的工作包括体内测试,优化工作流程以及与CBCT图像引导系统集成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号