首页> 美国卫生研究院文献>Scientific Reports >Molecular dynamics simulations of heterogeneous cell membranes in response to uniaxial membrane stretches at high loading rates
【2h】

Molecular dynamics simulations of heterogeneous cell membranes in response to uniaxial membrane stretches at high loading rates

机译:异质细胞膜在高加载速率下响应单轴膜拉伸的分子动力学模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The chemobiomechanical signatures of diseased cells are often distinctively different from that of healthy cells. This mainly arises from cellular structural/compositional alterations induced by disease development or therapeutic molecules. Therapeutic shock waves have the potential to mechanically destroy diseased cells and/or increase cell membrane permeability for drug delivery. However, the biomolecular mechanisms by which shock waves interact with diseased and healthy cellular components remain largely unknown. By integrating atomistic simulations with a novel multiscale numerical framework, this work provides new biomolecular mechanistic perspectives through which many mechanosensitive cellular processes could be quantitatively characterised. Here we examine the biomechanical responses of the chosen representative membrane complexes under rapid mechanical loadings pertinent to therapeutic shock wave conditions. We find that their rupture characteristics do not exhibit significant sensitivity to the applied strain rates. Furthermore, we show that the embedded rigid inclusions markedly facilitate stretch-induced membrane disruptions while mechanically stiffening the associated complexes under the applied membrane stretches. Our results suggest that the presence of rigid molecules in cellular membranes could serve as “mechanical catalysts” to promote the mechanical destructions of the associated complexes, which, in concert with other biochemical/medical considerations, should provide beneficial information for future biomechanical-mediated therapeutics.
机译:患病细胞的化学生物力学特征通常与健康细胞明显不同。这主要是由于疾病发展或治疗分子引起的细胞结构/组成改变。治疗性冲击波具有机械破坏病变细胞和/或增加细胞膜通透性以用于药物输送的潜力。但是,冲击波与疾病和健康的细胞成分相互作用的生物分子机制仍然未知。通过将原子模拟与新颖的多尺度数值框架相集成,这项工作提供了新的生物分子力学观点,通过这些观点可以对许多机械敏感的细胞过程进行定量表征。在这里,我们检查与治疗性冲击波条件有关的快速机械负载下所选代表性膜复合物的生物力学响应。我们发现,它们的断裂特性对施加的应变率没有显着的敏感性。此外,我们表明,嵌入的刚性夹杂物显着促进了拉伸诱导的膜破裂,同时在应用的膜拉伸作用下机械加固了相关的复合物。我们的结果表明,细胞膜中刚性分子的存在可以作为促进相关复合物机械破坏的“机械催化剂”,与其他生物化学/医学方面的考虑相结合,应为未来生物力学介导的治疗方法提供有益的信息。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号