首页> 美国卫生研究院文献>Scientific Reports >3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation
【2h】

3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation

机译:微生物引起的方解石沉淀胶结土壤的3-D微结构和力学响应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce the application of microbial-induced calcite precipitation via the ureolytic soil bacterium Sporosarcina Pasteurii in freeze-dried form, as a means of enhancing overall MICP efficiency and reproducibility for geotechnical engineering applications. We show that the execution of urea hydrolysis and CaCO3 precipitation persist as a “cell-free” mechanism upon the complete breakdown of rehydrated cell clusters. Further, strength and stiffness parameters of bio-cemented sands are determined. Medium-grained bio-cemented sand yields compressive strengths up to 12 MPa while, surprisingly, fine-grained sand yields up to 2.5 MPa for similar bond contents. To understand the observed discrepancies, we undertake a systematic study of the bio-cemented material’s microstructure, by combining a series of microstructural inspection tools. The study extends beyond conventional qualitative and textural characterization and provides with new insight into the material’s peculiar 3D micro-architecture. We apply a new methodology towards quantifying crucial microscopic characteristics such as the particle sizes of the crystalline bond lattice, the bond-grain contacts and particle orientations. Bonds are found to exhibit distinctive geometries and morphologies when MICP applies to different base materials. We thus contribute to the debate on the importance of factors affecting: (i) MICP efficiency, (ii) the mechanical response and (iii) peculiar micro-architecture of bio-improved geo-materials.
机译:我们介绍了通过冻干形式的尿素分解土壤细菌Sporosarcina Pasteurii微生物诱导的方解石沉淀的应用,作为提高总体MICP效率和岩土工程应用可重复性的一种手段。我们表明,尿素水解和CaCO3沉淀的执行继续作为“无细胞”机制,完全破坏了再水合的细胞簇。此外,确定了生物胶结砂的强度和刚度参数。中粒生物胶结砂的抗压强度高达12 MPa,而令人惊讶的是,对于相似的粘结含量,细粒砂的抗压强度高达2.5 MPa。为了了解观察到的差异,我们结合了一系列的微观结构检查工具,对生物胶结材料的微观结构进行了系统的研究。这项研究超越了传统的定性和纹理表征,并提供了对该材料独特的3D微结构的新见解。我们采用一种新的方法来量化关键的微观特性,例如结晶键晶格的粒径,键粒接触和颗粒取向。当MICP应用于不同的基础材料时,发现键具有独特的几何形状和形态。因此,我们为关于影响以下因素的重要性的辩论做出了贡献:(i)MICP效率,(ii)机械响应,以及(iii)生物改良的土工材料特有的微结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号