首页> 美国卫生研究院文献>Advanced Science >Caging Na3V2(PO4)2F3 Microcubes in Cross‐Linked Graphene Enabling Ultrafast Sodium Storage and Long‐Term Cycling
【2h】

Caging Na3V2(PO4)2F3 Microcubes in Cross‐Linked Graphene Enabling Ultrafast Sodium Storage and Long‐Term Cycling

机译:在交联石墨烯中封闭Na3V2(PO4)2F3微立方可实现超快的钠存储和长期循环

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sodium‐ion batteries are widely regarded as a promising supplement for lithium‐ion battery technology. However, it still suffers from some challenges, including low energy/power density and unsatisfactory cycling stability. Here, a cross‐linked graphene‐caged Na3V2(PO4)2F3 microcubes (NVPF@rGO) composite via a one‐pot hydrothermal strategy followed by freeze drying and heat treatment is reported. As a cathode for a sodium‐ion half‐cell, the NVPF@rGO delivers excellent cycling stability and rate capability, as well as good low temperature adaptability. The structural evolution during the repeated Na+ extraction/insertion and Na ions diffusion kinetics in the NVPF@rGO electrode are investigated. Importantly, a practicable sodium‐ion full‐cell is constructed using a NVPF@rGO cathode and a N‐doped carbon anode, which delivers outstanding cycling stability (95.1% capacity retention over 400 cycles at 10 C), as well as an exceptionally high energy density (291 Wh kg−1 at power density of 192 W kg−1). Such micro‐anoscale design and engineering strategies, as well as deeper understanding of the ion diffusion kinetics, may also be used to explore other micro‐anostructure materials to boost the performance of energy storage devices.
机译:钠离子电池被广泛认为是锂离子电池技术的有希望的补充。然而,它仍然遭受一些挑战,包括低的能量/功率密度和不令人满意的循环稳定性。此处报道了一种通过单锅水热法交联的石墨烯笼罩的Na3V2(PO4)2F3微立方(NVPF @ rGO)复合材料,然后进行冷冻干燥和热处理。作为钠离子半电池的阴极,NVPF @ rGO具有出色的循环稳定性和倍率性能,以及良好的低温适应性。研究了在NPFF @ rGO电极中重复进行Na + 萃取/插入过程中的结构演变和Na离子扩散动力学。重要的是,使用NVPF @ rGO阴极和N掺杂碳阳极构造可行的钠离子全电池,该电池具有出色的循环稳定性(在10 C的400个循环中,容量保持率为95.1%)。能量密度(在192 W kg -1 的功率密度下为291 Wh kg -1 )。这种微纳尺度的设计和工程策略,以及对离子扩散动力学的更深刻理解,也可用于探索其他微纳结构材料,以提高储能装置的性能。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号