首页> 美国卫生研究院文献>Nanoscale Research Letters >TiO2 Nanotube-Carbon (TNT-C) as Support for Pt-based Catalyst for High Methanol Oxidation Reaction in Direct Methanol Fuel Cell
【2h】

TiO2 Nanotube-Carbon (TNT-C) as Support for Pt-based Catalyst for High Methanol Oxidation Reaction in Direct Methanol Fuel Cell

机译:TiO2纳米管碳(TNT-C)作为直接甲醇燃料电池中高甲醇氧化反应的Pt基催化剂的载体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, TiO2 nanotubes (TNTs) were synthesized via a hydrothermal method using highly concentrated NaOH solutions varying from 6 to 12 M at 180 °C for 48 h. The effects of the NaOH concentration and the TNT crystal structure on the performance for methanol oxidation were investigated to determine the best catalyst support for Pt-based catalysts. The results showed that TNTs produced with 10 M NaOH exhibited a length and a diameter of 550 and 70 nm, respectively; these TNTs showed the best nanotube structure and were further used as catalyst supports for a Pt-based catalyst in a direct methanol fuel cell. The synthesized TNT and Pt-based catalysts were analysed by FESEM, TEM, BET, EDX, XRD and FTIR. The electrochemical performance of the catalysts was investigated using cyclic voltammetry (CV) and chronoamperometric (CA) analysis to further understand the methanol oxidation in the direct methanol fuel cell (DMFC). Finally, the result proves that Pt-Ru/TNT-C catalyst shows high performance in methanol oxidation as the highest current density achieved at 3.3 mA/cm2 (normalised by electrochemically active surface area) and high catalyst tolerance towards poisoning species was established.
机译:在这项研究中,TiO2纳米管(TNT)是通过水热法使用180°C下6至12M的高浓度NaOH溶液在48小时内合成的。研究了NaOH浓度和TNT晶体结构对甲醇氧化性能的影响,以确定Pt基催化剂的最佳催化剂载体。结果表明,用10M NaOH生成的TNT的长度和直径分别为550和70nm;这些TNT显示出最佳的纳米管结构,并进一步用作直接甲醇燃料电池中基于Pt的催化剂的催化剂载体。通过FESEM,TEM,BET,EDX,XRD和FTIR对合成的TNT和Pt基催化剂进行了分析。使用循环伏安法(CV)和计时电流法(CA)分析了催化剂的电化学性能,以进一步了解直接甲醇燃料电池(DMFC)中的甲醇氧化。最后,结果证明Pt-Ru / TNT-C催化剂在甲醇氧化中表现出较高的性能,因为在3.3mA / cm 2 (通过电化学活性表面积进行归一化)下可获得最高电流密度建立了对中毒物种的耐受性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号