首页> 美国卫生研究院文献>other >Promoting Shewanella Bidirectional Extracellular Electron Transfer for Bioelectrocatalysis by Electropolymerized Riboflavin Interface on Carbon Electrode
【2h】

Promoting Shewanella Bidirectional Extracellular Electron Transfer for Bioelectrocatalysis by Electropolymerized Riboflavin Interface on Carbon Electrode

机译:碳电极上电聚合的核黄素界面促进希瓦氏菌双向胞外电子转移用于生物电催化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The extracellular electron transfer (EET) that connects the intracellular metabolism of electroactive microorganisms to external electron donors/acceptors, is the foundation to develop diverse microbial electrochemical technologies. For a particular microbial electrochemical device, the surface chemical property of an employed electrode material plays a crucial role in the EET process owing to the direct and intimate biotic-abiotic interaction. The functional modification of an electrode surface with redox mediators has been proposed as an effectual approach to promote EET, but the underlying mechanism remains unclear. In this work, we investigated the enhancement of electrochemically polymerized riboflavin interface on the bidirectional EET of Shewanella putrefaciens CN32 for boosting bioelectrocatalytic ability. An optimal polyriboflavin functionalized carbon cloth electrode achieved about 4.3-fold output power density (∼707 mW/m2) in microbial fuel cells and 3.7-fold cathodic current density (∼0.78 A/m2) for fumarate reduction in three-electrode cells compared to the control, showing great increases in both outward and inward EET rates. Likewise, the improvement was observed for polyriboflavin-functionalized graphene electrodes. Through comparison between wild-type strain and outer-membrane cytochrome (MtrC/UndA) mutant, the significant improvements were suggested to be attributed to the fast interfacial electron exchange between the polyriboflavin interface with flexible electrochemical activity and good biocompatibility and the outer-membrane cytochromes of the Shewanella strain. This work not only provides an effective approach to boost microbial electrocatalysis for energy conversion, but also offers a new demonstration of broadening the applications of riboflavin-functionalized interface since the widespread contribution of riboflavin in various microbial EET pathways together with the facile electropolymerization approach.
机译:连接电活性微生物的细胞内代谢与外部电子供体/受体的细胞外电子转移(EET)是开发各种微生物电化学技术的基础。对于特定的微生物电化学装置,由于直接和密切的生物-非生物相互作用,所用电极材料的表面化学性质在EET过程中起着至关重要的作用。已经提出用氧化还原介体对电极表面进行功能性修饰作为促进EET的有效方法,但其潜在机理尚不清楚。在这项工作中,我们研究了腐烂希瓦氏菌CN32双向EET上电化学聚合核黄素界面的增强,以增强生物电催化能力。最佳的核黄素功能化碳纤维布电极在微生物燃料电池中可实现约4.3倍的输出功率密度(〜707 mW / m 2 )和3.7倍的阴极电流密度(〜0.78 A / m ) 2 )与对照组相比,三电极电池的富马酸酯减少,显示出向外和向内的EET速率均大大增加。同样,观察到聚核黄素官能化石墨烯电极的改进。通过野生型菌株和外膜细胞色素(MtrC / UndA)突变体之间的比较,表明重大改进归因于具有弹性电化学活性和良好生物相容性的多核黄素界面与外膜细胞色素之间的快速界面电子交换。希瓦氏菌菌株。由于核黄素在各种微生物EET途径中的广泛贡献以及简便的电聚合方法,这项工作不仅提供了一种有效的方法来增强微生物电催化的能量转化,而且还提供了拓宽核黄素功能化界面应用的新例证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号