首页> 美国卫生研究院文献>other >The Air-Breathing Paradise Fish (Macropodus opercularis) Differs From Aquatic Breathers in Strategies to Maintain Energy Homeostasis Under Hypoxic and Thermal Stresses
【2h】

The Air-Breathing Paradise Fish (Macropodus opercularis) Differs From Aquatic Breathers in Strategies to Maintain Energy Homeostasis Under Hypoxic and Thermal Stresses

机译:呼吸空气的天堂鱼(Macropodus opercularis)不同于水生呼吸的策略以在低氧和热胁迫下维持能量稳态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two major strategies are used by most fish to maintain energy homeostasis under hypoxia. One is to utilize alternative metabolic pathways to increase energy production, and the other is to limit energy expenditure by suppressing energy-consuming processes, especially ionoregulation. Some anabantoid fishes live in tropical rivers, where hypoxic environments occur frequently. We previously found that under ambient hypoxia, anabantoid fishes do not downregulate Na+/K+-ATPase (NKA) activity to conserve energy in gills but instead increase the frequency of air-breathing respiration (ABR). In addition to the hypoxic condition, another factor that may cause cellular hypoxia in fish is abnormally high environmental temperatures. The frequency of such extreme thermal events has increased due to global climate change. In the present study, we examined whether the anabantoid fish, Macropodus opercularis employs the two strategies mentioned above to resist both ambient hypoxic and elevated thermal (cellular hypoxic) conditions. Results indicate that neither glucose metabolism nor gill NKA activity were altered by hypoxia (DO = 1.5 ± 1 mg/L), but glucose metabolism was increased by thermal stress (34 ± 1°C). NH4+ excretion and ABR frequency were both increased under hypoxia, thermal or hypoxic-and-thermal treatments. In fish that were restricted from breathing air, increased mortality and glucose metabolism were observed under hypoxic or thermal treatments. These results suggest that for M. opercularis, increasing ABR is an important strategy for coping with unmet oxygen demand under hypoxic or thermal stress. This behavioral compensation allows anabantoid fish to physiologically withstand hypoxic and thermal stresses, and constitutes a mechanism of stress resistance that is unavailable to water-breathing fishes.
机译:大多数鱼使用两种主要策略来维持缺氧条件下的能量稳态。一种是利用替代性代谢途径来增加能量产生,另一种是通过抑制能量消耗过程(尤其是电离过程)来限制能量消耗。一些类拟南芥鱼类生活在热带河流中,缺氧环境经常发生。我们先前发现,在环境缺氧的情况下,类黄酮鱼类不会下调Na + / K + -ATPase(NKA)活性以节省g中的能量,而是增加空气的频率-呼吸呼吸(ABR)。除了缺氧状况外,可能导致鱼类细胞缺氧的另一个因素是异常高的环境温度。由于全球气候变化,这种极端热事件的发生频率增加了。在本研究中,我们检查了类黄斑鱼(Macropodus opercularis)是否采用上述两种策略来抵抗环境低氧和高温(细胞低氧)条件。结果表明,低氧(DO = 1.5±1 mg / L)不会改变葡萄糖代谢或腮NKA活性,而热应激(34±1°C)会增加葡萄糖代谢。在缺氧,热或低氧和热处理下,NH4 + 的排泄和ABR频率均增加。在禁止呼吸的鱼中,在低氧或热处理条件下观察到死亡率和葡萄糖代谢增加。这些结果表明,对于耻骨分枝杆菌,增加ABR是应对缺氧或热应激下未满足的需氧量的重要策略。这种行为补偿使类拟南芥鱼类在生理上能够承受缺氧和热应激,并构成了耐水鱼类无法获得的抗压力机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号