首页> 美国卫生研究院文献>ACS Omega >Electrospun Piezoelectric Polymer NanofiberLayers for Enabling in Situ Measurement in High-Performance CompositeLaminates
【2h】

Electrospun Piezoelectric Polymer NanofiberLayers for Enabling in Situ Measurement in High-Performance CompositeLaminates

机译:静电纺压电聚合物纳米纤维高性能复合材料中用于现场测量的层层压板

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article highlights the effects from composite manufacturing parameters on fiber-reinforced composite laminates modified with layers of piezoelectric thermoplastic nanofibers and a conductive electrode layer. Such modifications have been used for enabling in situ deformation measurement in high-performance aerospace and renewable energy composites. Procedures for manufacturing high-performance composites are well-known and standardized. However, this does not imply that modifications via addition of functional layers (e.g., piezoelectric nanofibers) while following the same manufacturing procedures can lead to a successful multifunctional composite structure (e.g., for enabling in situ measurement). This article challenges success of internal embedment of piezoelectric nanofibers in standard manufacturing of high-performance composites via relying on composite process specifications and parameters only. It highlights that the process parameters must be revised for manufacturing of multifunctional composites. Several methods have been used to lay up and manufacture composites such as electrospinning the thermoplastic nanofibers, processing an interdigital electrode (IDE) made by conductive epoxy–graphene resin,and prepreg autoclave manufacturing aerospace grade laminates. Thepurpose of fabrication of IDE was to use a resin type (HexFlow RTM6)for the conductive layer similar to that used for the composite. Thereby,material mismatch is avoided and the structural integrity is sustainedvia mitigation of downgrading effects on the interlaminar properties.X-ray diffraction, Fourier transform infrared spectroscopy, energydispersive X-ray spectroscopy, and scanning electron microscopy analyseshave been carried out in the material characterization phase. Pulsedthermography and ultrasonic C-scanning were used for the localizationof conductive resin embedded within the composite laminates. Thisstudy also provides recommendations for enabling internally embeddedpiezoelectricity (and thus health-monitoring capabilities) in high-performancecomposite laminates.
机译:本文重点介绍了复合材料制造参数对用压电热塑性纳米纤维层和导电电极层改性的纤维增强复合材料层压板的影响。此类修改已用于实现高性能航空航天和可再生能源复合材料的原位变形测量。制造高性能复合材料的程序是众所周知的和标准化的。然而,这并不意味着在遵循相同的制造程序的同时通过添加功能层(例如,压电纳米纤维)进行的修改可以导致成功的多功能复合结构(例如,用于原位测量)。本文仅依靠复合材料的工艺规范和参数,挑战了高性能复合材料标准制造中压电纳米纤维内部嵌入的成功。它强调了必须修改工艺参数才能制造多功能复合材料。已经使用了几种方法来铺放和制造复合材料,例如静电纺丝热塑性纳米纤维,由导电环氧-石墨烯树脂制成的数字电极(IDE),和预浸料高压釜生产航空级层压板。的制造IDE的目的是使用树脂类型(HexFlow RTM6)用于导电层的材料类似于用于复合材料的材料。从而,避免材料不匹配,保持结构完整性通过减轻降级对层间性能的影响。X射线衍射,傅立叶变换红外光谱,能量色散X射线光谱学和扫描电子显微镜分析已经在材料表征阶段进行了。脉冲式使用热成像和超声C扫描进行定位嵌入复合层压板中的导电树脂。这个研究还提供了有关实现内部嵌入的建议高性能的压电性(因此具有健康监测功能)复合层压板。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号