首页> 美国卫生研究院文献>other >Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks
【2h】

Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks

机译:物理物体和神经振荡器网络之间耦合动力学中的混沌迭代

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the “information networks” different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.
机译:混沌迭代是一种现象,其中非线性动力学系统的状态自发地探索并吸引状态空间中的某些状态。从这个角度来看,动物的各种行为及其自发转变会导致复杂的耦合动力系统,包括身体和大脑。在此,进行了一系列模拟,使用了不同类型的非线性振荡器网络(即规则的,小世界的,无标度的,随机的),并以肌肉骨骼模型(例如,蛇状机器人)作为实体。了解身体行为的混沌迭代是如何从身体与大脑之间的耦合动力学中出现的。然后应用针对分类行为的行为分析(行为聚类)和网络分析。前者包括从运动中提取特征向量和对耦合动力学中出现的运动模式进行分类。通过基于找到信息的神经元之间的传递熵,估计与给定的非线性振荡器网络不同的“信息网络”,揭示了分类运动模式背后的网络结构。实验结果表明:(1)运动模式的数量及其持续时间取决于传感器比率,以控制人体与大脑动力学之间的强度平衡,并且取决于给定的非线性振荡器网络的类型; (2)利用复杂的网络测度,在两种具有不同持续时间的运动模式后发现两种信息网络,聚类系数和最短路径长度与运动模式的持续时间成负相关。当前的结果似乎有望使该方法将来扩展到更复杂的身体和环境。还讨论了几个要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号