首页> 美国卫生研究院文献>other >Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture
【2h】

Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture

机译:揭示蓝藻芽孢杆菌属的生理作用。 BBD和其他黑带病社区成员通过混合文化的基因组分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Black band disease (BBD) is a cyanobacterial-dominated polymicrobial mat that propagates on and migrates across coral surfaces, necrotizing coral tissue. Culture-based laboratory studies have investigated cyanobacteria and heterotrophic bacteria isolated from BBD, but the metabolic potential of various BBD microbial community members and interactions between them remain poorly understood. Here we report genomic insights into the physiological and metabolic potential of the BBD-associated cyanobacterium Geitlerinema sp. BBD 1991 and six associated bacteria that were also present in the non-axenic culture. The essentially complete genome of Geitlerinema sp. BBD 1991 contains a sulfide quinone oxidoreductase gene for oxidation of sulfide, suggesting a mechanism for tolerating the sulfidic conditions of BBD mats. Although the operon for biosynthesis of the cyanotoxin microcystin was surprisingly absent, potential relics were identified. Genomic evidence for mixed-acid fermentation indicates a strategy for energy metabolism under the anaerobic conditions present in BBD during darkness. Fermentation products may supply carbon to BBD heterotrophic bacteria. Among the six associated bacteria in the culture, two are closely related to organisms found in culture-independent studies of diseased corals. Their metabolic pathways for carbon and sulfur cycling, energy metabolism, and mechanisms for resisting coral defenses suggest adaptations to the coral surface environment and biogeochemical roles within the BBD mat. Polysulfide reductases were identified in a Flammeovirgaceae genome (Bacteroidetes) and the sox pathway for sulfur oxidation was found in the genome of a Rhodospirillales bacterium (Alphaproteobacteria), revealing mechanisms for sulfur cycling, which influences virulence of BBD. Each genomic bin possessed a pathway for conserving energy from glycerol degradation, reflecting adaptations to the glycerol-rich coral environment. The presence of genes for detoxification of reactive oxygen species and resistance to antibiotics suggest mechanisms for combating coral defense strategies. This study builds upon previous research on BBD and provides new insights into BBD disease etiology.
机译:黑带病(BBD)是一种以蓝细菌为主的微生物垫,可在珊瑚表面传播和迁移,从而使珊瑚组织坏死。基于文化的实验室研究已经调查了从BBD分离出的蓝细菌和异养细菌,但各种BBD微生物群落成员的代谢潜力及其之间的相互作用仍然知之甚少。在这里,我们报告基因组见解与BBD相关的蓝藻Geitlerinema sp的生理和代谢潜力。 1991年出版的《生物多样性公约》和六种相关细菌也都存在于非树胶培养物中。 Geitlerinema sp。的基本完整的基因组。 BBD 1991包含用于硫化物氧化的硫化物醌氧化还原酶基因,提示了耐受BBD垫的硫化条件的机制。尽管出奇地缺乏用于蓝藻毒素微囊藻毒素生物合成的操纵子,但已鉴定出潜在的文物。混合酸发酵的基因组证据表明,在黑暗中,BBD中存在的厌氧条件下的能量代谢策略。发酵产物可为BBD异养细菌提供碳。在养殖中的六种相关细菌中,有两种与在与养殖无关的有病珊瑚研究中发现的生物密切相关。它们的碳和硫循环代谢途径,能量代谢以及抵抗珊瑚防御的机制表明,它们适应了BBD垫内的珊瑚表面环境和生物地球化学作用。在Flammeovirgaceae基因组(拟杆菌)中鉴定出多硫化物还原酶,并在Rhodospirillales细菌(Alphaproteobacteria)的基因组中发现了硫氧化的sox途径,揭示了硫循环的机制,这影响了BBD的毒力。每个基因组箱都具有保存甘油降解能量的途径,反映了对富含甘油的珊瑚环境的适应性。活性氧排毒基因的存在和对抗生素的耐药性提示了对抗珊瑚防御策略的机制。这项研究建立在先前对BBD的研究的基础上,并提供了有关BBD病因的新见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号