首页> 美国卫生研究院文献>other >Modeling Active Contraction and Relaxation of Left Ventricle Using Different Zero-load Diastole and Systole Geometries for Better Material Parameter Estimation and Stress/Strain Calculations
【2h】

Modeling Active Contraction and Relaxation of Left Ventricle Using Different Zero-load Diastole and Systole Geometries for Better Material Parameter Estimation and Stress/Strain Calculations

机译:使用不同的零负荷舒张期和收缩期几何模型对左心室的主动收缩和舒张进行建模以更好地估计材料参数并计算应力/应变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modeling ventricle active contraction based on in vivo data is extremely challenging because of complex ventricle geometry, dynamic heart motion and active contraction where the reference geometry (zero-stress geometry) changes constantly. A new modeling approach using different diastole and systole zero-load geometries was introduced to handle the changing zero-load geometries for more accurate stress/strain calculations. Echo image data were acquired from 5 patients with infarction (Infarct Group) and 10 without (Non-Infarcted Group). Echo-based computational two-layer left ventricle models using one zero-load geometry (1G) and two zero-load geometries (2G) were constructed. Material parameter values in Mooney-Rivlin models were adjusted to match echo volume data. Effective Young’s moduli (YM) were calculated for easy comparison. For diastole phase, begin-filling (BF) mean YM value in the fiber direction (YMf) was 738% higher than its end-diastole (ED) value (645.39 kPa vs. 76.97 kPa, p=3.38E-06). For systole phase, end-systole (ES) YMf was 903% higher than its begin-ejection (BE) value (1025.10 kPa vs. 102.11 kPa, p=6.10E-05). Comparing systolic and diastolic material properties, ES YMf was 59% higher than its BF value (1025.10 kPa vs. 645.39 kPa. p=0.0002). BE mean stress value was 514% higher than its ED value (299.69 kPa vs. 48.81 kPa, p=3.39E-06), while BE mean strain value was 31.5% higher than its ED value (0.9417 vs. 0.7162, p=0.004). Similarly, ES mean stress value was 562% higher than its BF value (19.74 kPa vs. 2.98 kPa, p=6.22E-05), and ES mean strain value was 264% higher than its BF value (0.1985 vs. 0.0546, p=3.42E-06). 2G models improved over 1G model limitations and may provide better material parameter estimation and stress/strain calculations.
机译:由于体内复杂的心室几何形状,动态心脏运动和主动收缩(参考几何(零应力几何)不断变化),因此基于体内数据对心室主动收缩进行建模非常具有挑战性。引入了一种新的建模方法,该方法使用不同的舒张期和收缩期零负荷几何形状来处理变化的零负荷几何形状,以实现更精确的应力/应变计算。从5例梗死患者(梗塞组)和10例无梗塞患者(非梗塞组)获取回波图像数据。构造了基于回波的计算两层左心室模型,该模型使用一个零负荷几何形状(1G)和两个零负荷几何形状(2G)。调整了Mooney-Rivlin模型中的材料参数值以匹配回波体积数据。计算有效杨氏模量(YM)以便于比较。对于舒张期,开始填充(BF)在纤维方向(YMf)的平均YM值比其舒张末期(ED)的值高738%(645.39 kPa对76.97 kPa,p = 3.38E-06)。对于收缩期,收缩末期(ES)的YMf比其开始喷射(BE)值高903%(1025.10 kPa与102.11 kPa,p = 6.10E-05)。比较收缩期和舒张期的材料特性,ES YMf比其BF值高59%(1025.10 kPa与645.39 kPa。p = 0.0002)。 BE平均应力值比其ED值高514%(299.69 kPa对48.81 kPa,p = 3.39E-06),而BE平均应变值比其ED值高31.5%(0.9417对0.7162,p = 0.004) )。类似地,ES平均应力值比其BF值高出562%(19.74 kPa对2.98 kPa,p = 6.22E-05),ES平均应力值比其BF值高264%(0.1985对0.0546,p = 3.42E-06)。 2G模型优于1G模型的局限性,可以提供更好的材料参数估计和应力/应变计算。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号