首页> 美国卫生研究院文献>other >Static and Dynamic Fatigue Behavior of Topology Designed and Conventional 3D Printed Bioresorbable PCL Cervical Interbody Fusion Devices
【2h】

Static and Dynamic Fatigue Behavior of Topology Designed and Conventional 3D Printed Bioresorbable PCL Cervical Interbody Fusion Devices

机译:拓扑设计和常规3D打印的生物可吸收PCL颈椎椎间融合器的静态和动态疲劳行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, as an alternative to metal spinal fusion cages, 3D printed bioresorbable materials have been explored; however, the static and fatigue properties of these novel cages are not well known. Unfortunately, current ASTM testing standards used to determine these properties were designed prior to the advent of bioresorbable materials for cages. Therefore, the applicability of these standards for bioresorbable materials is unknown. In this study, an image-based topology and a conventional 3D printed bioresorbable poly(ε)-caprolactone (PCL) cervical cage design were tested in compression, compression-shear, and torsion, to establish their static and fatigue properties. Difficulties were in fact identified in establishing failure criteria and in particular determining compressive failure load. Given these limitations, under static loads, both designs withstood loads of over 650N in compression, 395N in compression-shear, and 0.25Nm in torsion, prior to yielding. Under dynamic testing, both designs withstood 5 million (5M) cycles of compression at 125% of their respective yield forces. Geometry significantly affected both the static and fatigue properties of the cages. The measured compressive yield loads fall within the reported physiological ranges; consequently, these PCL bioresorbable cages would likely require supplemental fixation. Most importantly, supplemental testing methods may be necessary beyond the current ASTM standards, to provide more accurate and reliable results, ultimately improving preclinical evaluation of these devices.
机译:最近,作为金属脊柱融合笼的替代品,已经探索了3D打印的生物可吸收材料。然而,这些新型保持架的静态和疲劳特性尚不为人所知。不幸的是,目前用于确定这些性能的ASTM测试标准是在笼用可生物吸收材料问世之前设计的。因此,这些标准对生物可吸收材料的适用性尚不清楚。在这项研究中,基于图像的拓扑结构和常规的3D打印的可生物吸收的聚(ε)-己内酯(PCL)子宫颈笼设计在压缩,压缩剪切和扭转中进行了测试,以建立其静态和疲劳特性。实际上在确定失效标准,尤其是确定压缩失效载荷时发现了困难。考虑到这些限制,在静载荷下,两种设计在屈服之前都承受了超过650N的压缩载荷,395N的压缩剪切载荷和0.25Nm的扭转载荷。在动态测试下,两种设计都承受了各自屈服力的125%的500万(5M)压缩循环。几何形状显着影响笼子的静态和疲劳特性。测得的压缩屈服载荷在报道的生理范围内;因此,这些PCL可生物吸收的笼子可能需要补充固定。最重要的是,可能需要超出当前ASTM标准的补充测试方法,以提供更准确和可靠的结果,从而最终改善这些设备的临床前评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号