首页> 美国卫生研究院文献>other >Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature
【2h】

Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature

机译:表皮热通量传感器测量核心体温的理论和实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability.
机译:由于该参数被广泛用作临床判断和患者管理的关键生物医学信号,因此长期,连续地测量核心体温引起了人们的极大兴趣。传统方法依赖于刚性和平面形式的装置或仪器,不易于与柔软,曲线,时间动态的皮肤表面紧密或顺应地整合。在此,提出了用于差动温度传感器的材料和机械设计,它们可以柔软且可逆地附着在皮肤表面上,并且还可以承受高水平的变形(例如弯曲,扭曲和拉伸)。一种理论方法以及一种建模算法,可以通过温度传感器的多次差分测量得出核心人体温度,这些温度传感器与皮肤之间的有效距离不同。灵敏度,准确性和响应时间通过有限元分析(FEA)进行分析,从而为传感器设计与性能之间的关系提供指导。在具有不同尺寸和不同对流条件的多种设备上进行的四组实验说明了该技术和分析方法的关键特征。最后,结果表明,具有多孔结构的隔热材料在减少响应时间和提高准确性方面具有优势,同时改善了机械性能和透气性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号