首页> 美国卫生研究院文献>other >Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota
【2h】

Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota

机译:相似组成的稻草中纤维素超分子结构的差异影响水稻土微生物群的生物量代谢。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an “ECOMICS” web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation.
机译:由于它们坚固且稳定,因此植物细胞壁中的木质纤维素超分子结构可以抵抗分解。但是,它们可以被土壤微生物降解并再循环。基于纤维素超分子结构的差异而没有组成变化的复杂微生物群的生物质降解特征鲜为人知。在这里,我们表征和评估了在不同研磨条件下加工的稻草生物质的纤维素超分子结构和组成。我们使用了一系列技术,包括固态和溶液态核磁共振(NMR)和傅立叶变换红外光谱,然后使用热重分析,溶液态NMR和变性梯度凝胶电泳对热力学和微生物降解性进行了表征。使用基于Web的“ ECOMICS”工具进一步分析了这些测量数据。从结果中,我们发现稻草的物理预处理通过裂解显着的分子木质纤维素键来改变木质纤维素超分子结构。从结晶纤维素到无定形纤维素的转变将热降解曲线转移到了较低的温度。此外,预处理的稻草样品在生物质降解过程中产生了具有不同代谢动力学的不同微生物群谱。这是第一份使用ECOMICS工具包全面表征结构,组成,热降解和微生物群特征的报告。通过揭示在不同研磨条件下加工的生物质的木质纤维素超分子结构之间的差异,我们的分析揭示了微生物群分布的特征组成以及生物质降解过程中的代谢分布和动态变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号