首页> 美国卫生研究院文献>other >Tmod1 and CP49 Synergize to Control the Fiber Cell Geometry Transparency and Mechanical Stiffness of the Mouse Lens
【2h】

Tmod1 and CP49 Synergize to Control the Fiber Cell Geometry Transparency and Mechanical Stiffness of the Mouse Lens

机译:TmOD1和Cp49协同控制纤维的单元几何形状透明度和鼠标透镜的机械刚度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The basis for mammalian lens fiber cell organization, transparency, and biomechanical properties has contributions from two specialized cytoskeletal systems: the spectrin-actin membrane skeleton and beaded filament cytoskeleton. The spectrin-actin membrane skeleton predominantly consists of α2β2-spectrin strands interconnecting short, tropomyosin-coated actin filaments, which are stabilized by pointed-end capping by tropomodulin 1 (Tmod1) and structurally disrupted in the absence of Tmod1. The beaded filament cytoskeleton consists of the intermediate filament proteins CP49 and filensin, which require CP49 for assembly and contribute to lens transparency and biomechanics. To assess the simultaneous physiological contributions of these cytoskeletal networks and uncover potential functional synergy between them, we subjected lenses from mice lacking Tmod1, CP49, or both to a battery of structural and physiological assays to analyze fiber cell disorder, light scattering, and compressive biomechanical properties. Findings show that deletion of Tmod1 and/or CP49 increases lens fiber cell disorder and light scattering while impairing compressive load-bearing, with the double mutant exhibiting a distinct phenotype compared to either single mutant. Moreover, Tmod1 is in a protein complex with CP49 and filensin, indicating that the spectrin-actin network and beaded filament cytoskeleton are biochemically linked. These experiments reveal that the spectrin-actin membrane skeleton and beaded filament cytoskeleton establish a novel functional synergy critical for regulating lens fiber cell geometry, transparency, and mechanical stiffness.
机译:哺乳动物晶状体纤维细胞组织,透明度和生物力学特性的基础来自两个专门的细胞骨架系统:血影蛋白-肌动蛋白膜骨架和珠状细丝细胞骨架。血影蛋白-肌动蛋白膜的骨架主要由连接原肌球蛋白包被的肌动蛋白细丝的α2β2-血影蛋白链组成,肌动蛋白丝肌动蛋白丝通过原位被原肌钙蛋白调节蛋白1(Tmod1)封端稳定并在没有Tmod1的情况下结构破坏。珠状细丝细胞骨架由中间细丝蛋白CP49和filensin组成,它们需要CP49进行组装并有助于晶状体透明性和生物力学。为了评估这些细胞骨架网络的同时生理贡献并揭示它们之间潜在的功能协同作用,我们对缺乏Tmod1,CP49或两者的小鼠的晶状体进行了一系列结构和生理学分析,以分析纤维细胞疾病,光散射和生物力学压缩属性。研究结果表明,Tmod1和/或CP49的缺失会增加晶状体纤维细胞的紊乱和光散射,同时会损害压缩承载力,与单个突变体相比,双突变体表现出独特的表型。此外,Tmod1与CP49和filensin形成蛋白质复合物,表明血影蛋白-肌动蛋白网络和珠状细丝细胞骨架是生物化学连接的。这些实验表明,血影蛋白-肌动蛋白膜骨架和珠状细丝细胞骨架建立了新的功能协同作用,对调节晶状体纤维细胞的几何形状,透明度和机械刚度至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号