首页> 美国卫生研究院文献>other >Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: Improved backbone hydration and interactions between charged side chains
【2h】

Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: Improved backbone hydration and interactions between charged side chains

机译:带电荷的侧链之间改进的骨干水合和相互作用:用于折叠模拟混合联合原子和粗粒力场的进一步优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

PACE, a hybrid force field which couples united-atom protein models with coarse-grained (CG) solvent, has been further optimized, aiming to improve itse ciency for folding simulations. Backbone hydration parameters have been re-optimized based on hydration free energies of polyalanyl peptides through atomistic simulations. Also, atomistic partial charges from all-atom force fields were combined with PACE in order to provide a more realistic description of interactions between charged groups. Using replica exchange molecular dynamics (REMD), ab initio folding using the new PACE has been achieved for seven small proteins (16 – 23 residues) with different structural motifs. Experimental data about folded states, such as their stability at room temperature, melting point and NMR NOE constraints, were also well reproduced. Moreover, a systematic comparison of folding kinetics at room temperature has been made with experiments, through standard MD simulations, showing that the new PACE may speed up the actual folding kinetics 5-10 times. Together with the computational speedup benefited from coarse-graining, the force field provides opportunities to study folding mechanisms. In particular, we used the new PACE to fold a 73-residue protein, 3D, in multiple 10 – 30 μs simulations, to its native states (Cα RMSD ~ 0.34 nm). Our results suggest the potential applicability of the new PACE for the study of folding and dynamics of proteins.
机译:PACE是一种将联合原子蛋白质模型与粗粒(CG)溶剂耦合在一起的混合力场,现已得到进一步优化,目的是提高折叠模拟的效率。通过原子模拟,基于聚丙氨酰肽的水合自由能,对骨干水合参数进行了重新优化。同样,将来自所有原子力场的原子性部分电荷与PACE结合在一起,以提供对带电基团之间相互作用的更现实的描述。使用副本交换分子动力学(REMD),已经使用新的PACE从头开始折叠了七个具有不同结构基序的小蛋白质(16 – 23个残基)。关于折叠状态的实验数据,例如其在室温下的稳定性,熔点和NMR NOE限制条件,也得到了很好的再现。此外,通过标准的MD模拟,通过实验对室温下的折叠动力学进行了系统的比较,结果表明,新的PACE可以将实际的折叠动力学提高5-10倍。加上受益于粗粒度的计算加速,力场为研究折叠机制提供了机会。特别是,我们使用新的PACE在10到30μs的多次模拟中将73个残基的蛋白质3D折叠成其原始状态(CαRMSD〜0.34 nm)。我们的结果表明,新的PACE在蛋白质折叠和动力学研究中的潜在适用性。

著录项

  • 期刊名称 other
  • 作者

    Wei Han; Klaus Schulten;

  • 作者单位
  • 年(卷),期 -1(8),11
  • 年度 -1
  • 页码 4413–4424
  • 总页数 28
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号