首页> 美国卫生研究院文献>other >Decoding of Finger Hand and Arm Kinematics Using Switching Linear Dynamical Systems With Pre-Motor Cortical Ensembles
【2h】

Decoding of Finger Hand and Arm Kinematics Using Switching Linear Dynamical Systems With Pre-Motor Cortical Ensembles

机译:解码手指手和手臂运动学采用开关线性动力系统采用电机前皮层神经元群

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Previous works in Brain-Machine Interfaces (BMI) have mostly used a single Kalman filter decoder for deriving continuous kinematics in the complete execution of behavioral tasks. A linear dynamical system may not be able to generalize the sequence whose dynamics changes over time. Examples of such data include human motion such as walking, running, and dancing each of which exhibit complex constantly evolving dynamics. Switching linear dynamical systems (S-LDSs) are powerful models capable of describing a physical process governed by state equations that switch from time to time. The present work demonstrates the motion-state-dependent adaptive decoding of hand and arm kinematics in four different behavioral tasks. Single-unit neural activities were recorded from cortical ensembles in the ventral and dorsal premotor (PMv and PMd) areas of a trained rhesus monkey during four different reach-to-grasp tasks. We constructed S-LDSs for decoding of continuous hand and arm kinematics based on different epochs of the experiments, namely, baseline, pre-movement planning, movement, and final fixation. Average decoding accuracies as high as 89.9%, 88.6%, 89.8%, 89.4%, were achieved for motion-state-dependent decoding across four different behavioral tasks, respectively (p<0.05); these results are higher than previous works using a single Kalman filter (accuracy: 0.83). These results demonstrate that the adaptive decoding approach, or motion-state-dependent decoding, may have a larger descriptive capability than the decoding approach using a single decoder. This is a critical step towards the development of a BMI for adaptive neural control of a clinically viable prosthesis.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号