首页> 美国卫生研究院文献>other >A New Osteophyte Segmentation Algorithm Using the Partial Shape Model and Its Applications to Rabbit Femur Anterior Cruciate Ligament Transection via Micro-CT Imaging
【2h】

A New Osteophyte Segmentation Algorithm Using the Partial Shape Model and Its Applications to Rabbit Femur Anterior Cruciate Ligament Transection via Micro-CT Imaging

机译:一种新的骨赘分割算法使用部分形状模型及其在兔股骨前十字条韧带横向于微型CT成像的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Osteophyte is an additional bony growth on a normal bone surface limiting or stopping motion at a deteriorating joint. Detection and quantification of osteophytes from computed tomography (CT) images is helpful in assessing disease status as well as treatment and surgery planning. However, it is difficult to distinguish between osteophytes and healthy bones using simple thresholding or edge/texture features due to the similarity of their material composition. In this paper, we present a new method primarily based on the active shape model (ASM) to solve this problem and evaluate its application to the anterior cruciate ligament transaction (ACLT) rabbit femur model via micro-CT imaging. The common idea behind most ASM-based segmentation methods is to first build a parametric shape model from a training dataset and then apply the model to find a shape instance in a target image. A common challenge with such approaches is that a diseased bone shape is significantly altered at regions with osteophyte deposition misguiding an ASM method and eventually leading to suboptimum segmentations. This difficulty is overcome using a new partial-ASM method that uses bone shape over healthy regions and extrapolates it over the diseased region according to the underlying shape model. Finally, osteophytes are segmented by subtracting partial-ASM-derived shape from the overall diseased shape. Also, a new semiautomatic method is presented in this paper for efficiently building a 3-D shape model for an anatomic region using manual reference of a few anatomically defined fiducial landmarks that are highly reproducible on individuals. Accuracy of the method has been examined on simulated phantoms while reproducibility and sensitivity have been evaluated on micro-CT images of 2-, 4- and 8-week post-ACLT and sham-treated rabbit femurs. Experimental results have shown that the method is highly accurate (R2 = 0.99), reproducible (ICC = 0.97), and sensitive in detecting disease progression (p values: 0.065, 0.001, and <0.001 for 2 weeks versus 4 weeks, 4 weeks versus 8 weeks, and 2 weeks versus 8 weeks, respectively).

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号