首页> 美国卫生研究院文献>other >Electric field strength and focality in electroconvulsive therapy and magnetic seizure therapy: A finite element simulation study
【2h】

Electric field strength and focality in electroconvulsive therapy and magnetic seizure therapy: A finite element simulation study

机译:电场强度和在电休克治疗和磁检治疗焦性:一个有限元模拟研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present the first computational study comparing the electric field induced by various electroconvulsive therapy (ECT) and magnetic seizure therapy (MST) paradigms. Four ECT electrode configurations (bilateral, bifrontal, right unilateral, and focal electrically administered seizure therapy) and three MST coil configurations (circular, cap, and double cone) were modeled. The model incorporated a modality-specific neural activation threshold. ECT (0.3 ms pulse width) and MST induced maximum electric field in the brain of 2.1–2.5 V/cm and 1.1–2.2 V/cm, corresponding to 6.2–7.2 times and 1.2–2.3 times the neural activation threshold, respectively. The MST electric field is more confined to the superficial cortex compared to ECT. The brain volume stimulated was much higher with ECT (up to 100%) than MST (up to 8.2%). MST with the double cone coil was the most focal and bilateral ECT was the least focal. Our results suggest a possible biophysical explanation of the reduced side effects of MST compared to ECT. Our results also indicate that the conventional ECT pulse amplitude (800–900 mA) is much higher than necessary for seizure induction. Reducing the ECT pulse amplitude should be explored as a potential means of diminishing side effects.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号